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Figure 2: Overview of attention mechanism based on
Equation 3. It computes the output vector by summing
the weighted vectors; vectors with larger norms have
higher contributions. Sizes of the colored circles illus-
trate the value of the scalar or the norm of the corre-
sponding vector.

f(x) :=
�
xW V + bV

�
WO. (4)

Equation 3 shows that the attention mechanism
first transforms each input vector x to generate
f(x) ; computes attention weights ↵ ; and then

compute the sum ↵f(x) (see Figure 2).

2.3 Problems encountered in weight-based
analysis

The attention mechanism has been designed to
update representations by gathering relevant in-
formation from the input vectors. Prior stud-
ies have analyzed attention, focusing on atten-
tion weights, to ascertain which input vectors
contribute (weight-based analysis) (Clark et al.,
2019; Kovaleva et al., 2019; Reif et al., 2019; Lin
et al., 2019; Mareček and Rosa, 2019; Htut et al.,
2019; Raganato and Tiedemann, 2018; Tang et al.,
2018).

Analyses solely based on attention weight are
based on the assumption that the larger the atten-
tion weight of an input vector, the higher its con-
tribution to the output. However, this assumption
disregards the magnitudes of the transformed vec-
tors. The problem encountered when neglecting
the effect of f(xj) is illustrated in Figure 2. The
transformed vector f(x1) for input x1 is assumed
to be very small (kf(x1)k ⇡ 0), while its attention
weight ↵i,1 is considerably large. Note that the
small ↵i,1f(x1) contributes a little to the output
vector yi because yi is the sum of ↵f(x), where a

larger vector contributes more to the output. Con-
versely, the large ↵i,3f(x3) dominates the output
yi. Therefore, in this case, only considering the
attention weight may lead to a wrong interpreta-
tion of the high contribution of input vector x1 to
output yi. Nevertheless, x1 hardly has any effect
on yi.

Analyses based on attention weights have not
provided clear results in some cases. For example,
Clark et al. (2019) reported that input vectors for
separator tokens [SEP] tend to receive remarkably
large attention weights in BERT, while changing
the magnitudes of these weights does not affect
the masked-token prediction of BERT. Such re-
sults can be attributed to the aforementioned issue
of focusing only on attention weights.

3 Proposal: norm as a degree of attention

As described in Section 2.3, analyzing the atten-
tion mechanism with only attention weights ne-
glects the effect of the transformed vector f(xj),
which has a significant impact as we discussed
later.

Herein, we propose the measurement of
the norm of the weighted transformed vector

k↵f(x)k , given by Equation 3, to analyze the
attention mechanism behavior.3 Unlike in pre-
vious studies, we analyzed the behaviors of the
norms, k↵f(x)k and kf(x)k, and ↵ to gain more
in-depth insights into the functioning of attention.
The proposed method of analyzing the attention
mechanism is called norm-based analysis and the
method that solely analyzes the attention weights
is called weight-based analysis.

In Sections 4 and 5, we provide insights into the
working of Transformers using norm-based anal-
ysis. Appendix A explains that our norm-based
analysis can also be effectively applied to an en-
tire multi-head attention mechanism.

4 Experiments: BERT

First, we show that the previously ignored
transformed-vector norm affects the analysis of
attention in BERT (Section 4.1). Applying our
norm-based analysis, we re-examine the previ-
ous reports on BERT obtained by weight-based
analysis (Section 4.2). Next, we demonstrate the
previously overlooked properties of BERT (Sec-
tion 4.3).

3We use the standard Euclidean norm.
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Scientific modeling

• Why do planets move as observed?

• How did organic compounds emerge on the Earth?

• How do crowd crushes occur?

(figures are from Wikipedia or https://www.irasutoya.com/ , unless otherwise stated)
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Scientific modeling

• Why do planets move as observed?

• How did organic compounds emerge on the Earth?

• How do crowd crushes occur?

Build a model

Test the fit/prediction

Build a model

Test the fit/prediction

Build a model

Test the fit/prediction

https://www.rcast.u-tokyo.ac.jp/ja/research/nishinari_lab.html 
(figures are from Wikipedia or https://www.irasutoya.com/ , unless otherwise stated)
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Scientific modeling

• Why do planets move as observed?

• How did organic compound emerge on the Earth?

• How do crowd crushes occur?

Build a model

Test the fit/prediction

Build a model

Test the fit/prediction

Build a model

Test the fit/prediction

If a model exactly simulates a phenomenon 
of interest, the model serves as a good 
hypothesis/explanation for that 
phenomenon.

(aka. scientific modeling)

(figures are from Wikipedia or https://www.irasutoya.com/ , unless otherwise stated)
https://www.rcast.u-tokyo.ac.jp/ja/research/nishinari_lab.html 8
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Fundamental linguistic questions

• What are humans computing during real-time language processing?
• What kind of equation are you now computing in front of this slide?

• What is minimum requirements to be able to acquire language?
• Why do cats never start talking even if one keeps talking to them everyday?

• Why do natural languages share certain universals, e.g., subject precedes objects?
• Why do languages shape as is? How did it emerge?
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Why is artificial intelligence (AI) relevant to humanities?

• Science requires objectivity
• Paradox: if humans start to introspect about ourselves to study human intelligence, 

this will lack objectivity
• Thus, we have to build a model (artificial intelligence), apart from humans and test it

• One of the original goals of the AI field --- understanding it by building it
• …the field (artificial intelligence) from three points of view: computational psychology, computational 

philosophy, and machine intelligence…The goal of computational psychology is to understand human 
intelligent behavior by creating computer programs that behave in the same way that people do… 
The program should do quickly what people do quickly, should do more slowly what people have 
difficulty doing, and should even tend to make mistakes where people tend to make mistake… 
[Encyclopedia of Artificial Intelligence, Shapiro 1991]
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Why is artificial intelligence (AI) relevant to humanities?

• Science requires objectivity
• Paradox: if humans start to introspect about ourselves to study human intelligence, 

this will lack objectivity
• Thus, we have to build a model (artificial intelligence), apart from humans and test it

• Here, the goal is to build an exactly human-like computational model that 
simulates phenomena of humans, following the scientific modeling approach
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Build a model

Test the fit/prediction
Humanities studiesHuman language model

Our research: psycholinguistics

Human ability

LLM  studies

Can doCannot do

??
??

Humanity’s 
Last Exam
[Phan+,25]



Why is artificial intelligence (AI) relevant to humanities?

• Science requires objectivity
• Paradox: if humans start to introspect about ourselves to study human intelligence, 

this will lack objectivity
• Thus, we have to build a model (artificial intelligence), apart from humans and test it

• “Humans to explain humans” is super unethical (especially in causality experiments)

Pharaoh Psamtik 
(664 – 610 BCE)

Frederick II 
(1194-1250)

James IV 
(1473-1513)

If one locks an infant in a room, what language will they start speaking?

Going back to 7 BCE - 16 CE…

(Thanks for Alex: https://gdr-lift.loria.fr/wp-content/uploads/2023/06/A.-Warstadt-ILFC-seminar-talk.pdf )
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In 2025…

Build a model

Test the fit/prediction

Human language model

14



LLMs… are you the model of humans…?

• We humans somehow found one way 
to build a model that behaves like humans

15



LLMs… are you the model of humans…?

• We humans somehow found one way 
to build a model that behaves like humans

• Some linguists criticize that this is not 
the model that linguistics has pursued

?????
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LLMs… are you the model of humans…?

• We humans somehow found one way 
to build a model that behaves like humans

• Some linguists criticize that this is not 
the model that linguistics has pursued

• But we do not know other things that can learn 
human language as far as we know (in fact, it’s seemingly working the best)

• That’s why NVIDIA stock is sparking

?????
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LLMs… are you the model of humans…?

• We humans somehow found one way 
to build a model that behaves like humans

• Some linguists criticize that this is not 
the model that linguistics has pursued

• But we do not know other things that can learn 
human language as far as we know (in fact, it’s seemingly working the best)

• That’s why NVIDIA stock is sparking

If a model exactly simulates a phenomenon of interest, the model 
serves as a good hypothesis/explanation for the phenomena.

(aka. scientific modeling)

?????
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• The more unpredictable a word is, the more humans exhibit cognitive loads
• The relationship should be logarithmic
• Surprisal: Cost(𝑤!) ∝ − log" 𝑝(𝑤!|𝒘#𝒕%𝟏)

Cognitive modeling

19

❗

[Levy,08][Smith&Levy,13][Shain+,22]

If you were to journey to the 
North of England, …

If you

were
to
journey

to

the

North

ofre
ad

in
g 

tim
e

/b
ra

in
 a

ct
iv

ity

humans

Tokens: 𝒘 = {𝑤'…𝑤(} Cognitive load: 𝒚	= {𝑦'…𝑦(}

Psychometric Predictive Power of Large Language Models

Tatsuki Kuribayashi
1

Yohei Oseki
2

Timothy Baldwin
1,3

1MBZUAI 2The University of Tokyo 3The University of Melbourne
{tatsuki.kuribayashi,timothy.baldwin}@mbzuai.ac.ae

oseki@g.ecc.u-tokyo.ac.jp

Abstract

Instruction tuning aligns the response of large
language models (LLMs) with human prefer-
ences. Despite such efforts in human–LLM
alignment, we find that instruction tuning
does not always make LLMs human-like
from a cognitive modeling perspective. More
specifically, next-word probabilities estimated
by instruction-tuned LLMs are often worse
at simulating human reading behavior than
those estimated by base LLMs. In addition,
we explore prompting methodologies for
simulating human reading behavior with LLMs.
Our results show that prompts reflecting a
particular linguistic hypothesis improve
psychometric predictive power, but are still
inferior to small base models. These findings
highlight that recent advancements in LLMs,
i.e., instruction tuning and prompting, do not
offer better estimates than direct probability
measurements from base LLMs in cognitive
modeling. In other words, pure next-word
probability remains a strong predictor for hu-
man reading behavior, even in the age of LLMs.

https://github.com/kuribayashi4/
llm-cognitive-modeling

1 Introduction

Aligning computational models with human per-
ception/cognition has historically been a pivotal ap-
proach to understanding humans (Shapiro, 2003).
With this in mind, computational psycholinguis-
tics has investigated the model of human sentence
processing (Crocker, 2007) and recently found an
intriguing correlation between next-word proba-
bilities from language models (LMs) and human
reading behavior—the less predictable a word is,
the greater the cognitive load (e.g., longer reading
time) humans exhibit—suggesting the expectation-
based account of human sentence processing (Levy,
2008; Smith and Levy, 2013). Based on this find-
ing, the field has further investigated which types
of models/algorithms can compute probabilities

Predict next-word 
with pure corpus statistics

Predict next-word 
with prompting: generate a 
sentence with simplest vocabulary.

Predict next-word
to be preferred by humans
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Instruction-tuned (IT) LLM (§3.2)

IT-LLM w/ prompting (§4)
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Metalinguistic prompting: 
which word in the sentence will 
have a high processing cost? IT-LLM 

w/ metalinguistic prompting (§5)
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.

Human

Figure 1: Comparing the “reading behavior” of hu-
mans and LLMs, i.e., reading time from humans is
compared with surprisal from LLMs (§2.1). We in-
vestigate which surprisal values estimated by: (i) base
LLMs, (ii) instruction-tuned (IT) LLMs, (iii) IT-LLMs
with prompting, or (iv) IT-LLMs with metalinguistic
prompting can better simulate human reading time.

better aligned with human reading behavior (Fig-
ure 1; Hale (2001); Goodkind and Bicknell (2018);
Wilcox et al. (2020); Oh et al. (2021); Kuribayashi
et al. (2022); inter alia).

In the field of natural language processing (NLP),
in contrast, large language models (LLMs) tuned
to human-preferred responses (e.g., GPT-3.5) im-
prove in performance across a wide range of appli-
cations (Ouyang et al., 2022). Given the increas-
ing prevalence of such human-aligned, instruction-

tuned LLMs (IT-LLMs), the following computa-
tional psycholinguistic question naturally arises:
do IT-LLMs successfully simulate human reading

behavior in terms of predicted surprisal? The
answer to this question is not immediately ob-
vious. On the one hand, the answer might be
yes since these are tuned to human-preferred re-
sponses (Zhang et al., 2023), which will be, broadly
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Surprisal: 6𝒚	= {− log" 𝑝(𝑤'|𝒘#𝟏)	…− log" 𝑝(𝑤(|𝒘#𝒏)}

🤖
Not tuning any part

Unsupervised 
prediction*

*training a 
regression model to 
rule out baseline 
factors and 
determine the 
coefficients, though
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Are we approaching to the model of humans? 
--- scaling law in cognitive modeling

???

Scaling up neural LMs

LM-human 
correlations

20
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-

14

[Goodkind&Bicknell, 
2018]
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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eachstoryorarticledidnotfitintoasingle
contextwindowfortheLMs,thesecondhalf
ofthepreviouscontextwindowservedasthe
firsthalfofanewcontextwindowtocalculate
surprisalestimatesfortheremainingtokens.In
practice,moststoriesandarticlesfitcompletely
withintwocontextwindowsfortheGPT-2mod-
elsthathaveacontextsizeof1,024tokens,and
withinonecontextwindowfortheGPT-Neoand
OPTmodelsthathaveacontextsizeof2,048
tokens.Additionally,whenasinglewordwtwas
tokenizedintomultiplesubwordtokens,nega-
tivelogprobabilitiesofsubwordtokenscorre-
spondingtowtwereaddedtogethertocalculate
S(wt)=−logP(wt|w1..t−1).

3.3RegressionModeling
Subsequently,followingthemethodsofOhetal.
(2022),a‘baseline’LMEmodelthatcontains
baselinepredictorscapturinglow-levelcognitive
processingandseventeen‘full’LMEmodelsthat
containthebaselinepredictorsandeachLMsur-
prisalpredictorwerefittotheexploratorysetof
self-pacedreadingtimesandgo-pastdurations
usinglme4(Batesetal.,2015).Thebaselinepre-
dictorsincludewordlengthmeasuredincharacters
andindexofwordpositionwithineachsentence
(bothself-pacedreadingandeye-tracking),aswell
assaccadelengthandwhetherornottheprevious
wordwasfixated(eye-trackingonly).

Allpredictorswerecenteredandscaledprior
tomodelfitting,andtheLMEmodelsincluded
by-subjectrandomslopesforallfixedeffectsas
wellasrandominterceptsforeachsubjectand
eachwordtype.Additionally,forself-pacedread-
ingtimescollectedfrom181subjects,arandom
interceptforeachsubject-sentenceinteractionwas
included.Foreye-gazedurationscollectedfrom
amuchsmallernumberof10subjects,arandom
interceptforeachsentencewasincluded.

Aftertheregressionmodelswerefit,the∆LL
valueswerefirstcalculatedforeachregression
modelbysubtractingthelog-likelihoodofthe
baselinemodelfromthatofafullregression
model.Moreover,toexaminethetrendbetween
LMperplexityandpredictivepowerofsurprisal
estimates,theperplexityofeachLMvariantwas
calcuatedonthetwocorpora.

3.4Results
TheresultsinFigure1showthatsurprisalfrom
thesmallestvariant(i.e.,GPT-2Small,GPT-Neo

Figure1:PerplexitymeasuresfromeachLMvariant,
andimprovementsinregressionmodellog-likelihood
fromincludingeachsurprisalestimateontheex-
ploratorysetofNaturalStories(top)andDundeedata
(bottom).Dottedlinesindicatetheleast-squaresre-
gressionlineforeachLMfamily.

125M,andOPT125M)madethebiggestcontri-
butiontoregressionmodelfitonbothself-paced
readingtimesandeye-gazedurationsforthe
threeLMfamilies.Morenotably,surprisalesti-
matesfromlargerLMvariantswithineachfamily
yieldedstrictlypoorerfitstoreadingtimes,ro-
bustlyreplicatingthetrendobservedbyOhetal.
(2022).Interestingly,thethreeLMfamiliesalso
seemtodemonstrateastronglog-linearrelation-
shipbetweenperplexityand∆LL,ascanbeseen
bytheleast-squaresregressionlines.Allregres-
sionlineshadaslopesignificantlygreaterthan0
atp<0.05levelaccordingtoaone-tailedt-test,
withtheexceptionoftheregressionlineforGPT-2
onNaturalStories(p=0.07).Thistrendishighly
significantoverallbyabinomialtest(fiveresults
withp<0.05outofsixtrials),anddirectlycon-
tradictsthefindingsofrecentstudiesthatreporta
negativecorrelationbetweenLMperplexityand
predictivepowerofsurprisalestimates.
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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eachstoryorarticledidnotfitintoasingle
contextwindowfortheLMs,thesecondhalf
ofthepreviouscontextwindowservedasthe
firsthalfofanewcontextwindowtocalculate
surprisalestimatesfortheremainingtokens.In
practice,moststoriesandarticlesfitcompletely
withintwocontextwindowsfortheGPT-2mod-
elsthathaveacontextsizeof1,024tokens,and
withinonecontextwindowfortheGPT-Neoand
OPTmodelsthathaveacontextsizeof2,048
tokens.Additionally,whenasinglewordwtwas
tokenizedintomultiplesubwordtokens,nega-
tivelogprobabilitiesofsubwordtokenscorre-
spondingtowtwereaddedtogethertocalculate
S(wt)=−logP(wt|w1..t−1).

3.3RegressionModeling
Subsequently,followingthemethodsofOhetal.
(2022),a‘baseline’LMEmodelthatcontains
baselinepredictorscapturinglow-levelcognitive
processingandseventeen‘full’LMEmodelsthat
containthebaselinepredictorsandeachLMsur-
prisalpredictorwerefittotheexploratorysetof
self-pacedreadingtimesandgo-pastdurations
usinglme4(Batesetal.,2015).Thebaselinepre-
dictorsincludewordlengthmeasuredincharacters
andindexofwordpositionwithineachsentence
(bothself-pacedreadingandeye-tracking),aswell
assaccadelengthandwhetherornottheprevious
wordwasfixated(eye-trackingonly).

Allpredictorswerecenteredandscaledprior
tomodelfitting,andtheLMEmodelsincluded
by-subjectrandomslopesforallfixedeffectsas
wellasrandominterceptsforeachsubjectand
eachwordtype.Additionally,forself-pacedread-
ingtimescollectedfrom181subjects,arandom
interceptforeachsubject-sentenceinteractionwas
included.Foreye-gazedurationscollectedfrom
amuchsmallernumberof10subjects,arandom
interceptforeachsentencewasincluded.

Aftertheregressionmodelswerefit,the∆LL
valueswerefirstcalculatedforeachregression
modelbysubtractingthelog-likelihoodofthe
baselinemodelfromthatofafullregression
model.Moreover,toexaminethetrendbetween
LMperplexityandpredictivepowerofsurprisal
estimates,theperplexityofeachLMvariantwas
calcuatedonthetwocorpora.

3.4Results
TheresultsinFigure1showthatsurprisalfrom
thesmallestvariant(i.e.,GPT-2Small,GPT-Neo

Figure1:PerplexitymeasuresfromeachLMvariant,
andimprovementsinregressionmodellog-likelihood
fromincludingeachsurprisalestimateontheex-
ploratorysetofNaturalStories(top)andDundeedata
(bottom).Dottedlinesindicatetheleast-squaresre-
gressionlineforeachLMfamily.

125M,andOPT125M)madethebiggestcontri-
butiontoregressionmodelfitonbothself-paced
readingtimesandeye-gazedurationsforthe
threeLMfamilies.Morenotably,surprisalesti-
matesfromlargerLMvariantswithineachfamily
yieldedstrictlypoorerfitstoreadingtimes,ro-
bustlyreplicatingthetrendobservedbyOhetal.
(2022).Interestingly,thethreeLMfamiliesalso
seemtodemonstrateastronglog-linearrelation-
shipbetweenperplexityand∆LL,ascanbeseen
bytheleast-squaresregressionlines.Allregres-
sionlineshadaslopesignificantlygreaterthan0
atp<0.05levelaccordingtoaone-tailedt-test,
withtheexceptionoftheregressionlineforGPT-2
onNaturalStories(p=0.07).Thistrendishighly
significantoverallbyabinomialtest(fiveresults
withp<0.05outofsixtrials),anddirectlycon-
tradictsthefindingsofrecentstudiesthatreporta
negativecorrelationbetweenLMperplexityand
predictivepowerofsurprisalestimates.
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).

−2.6 −2.5 −2.4 −2.3 −2.2
10

20

30

40

50

60

Linguistic Accuracy

P
sy

ch
ol

og
ic

al
 A

cc
ur

ac
y

a1

a2

a3

a4

s1

s2
s3s4

m1 m2

m3

g2

g3

w2
w3

e1

e2 e3

e4

e5
e6

Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Abstract

In computational psycholinguistics, various
language models have been evaluated against
human reading behavior (e.g., eye movement)
to build human-like computational models.
However, most previous efforts have focused
almost exclusively on English, despite the re-
cent trend towards linguistic universal within
the general community. In order to fill the gap,
this paper investigates whether the established
results in computational psycholinguistics can
be generalized across languages. Specifically,
we re-examine an established generalization
—the lower perplexity a language model has,

the more human-like the language model is—
in Japanese with typologically different struc-
tures from English. Our experiments demon-
strate that this established generalization ex-
hibits a surprising lack of universality; namely,
lower perplexity is not always human-like.
Moreover, this discrepancy between English
and Japanese is further explored from the
perspective of (non-)uniform information den-
sity. Overall, our results suggest that a cross-
lingual evaluation will be necessary to con-
struct human-like computational models.

1 Introduction

It is well known that the probability of a word
in context (i.e., surprisal) impacts its processing
difficulty in incremental human language compre-
hension (Hale, 2001; Demberg and Keller, 2008;
Levy, 2008; Smith and Levy, 2013). Building
on this basis, researchers have compared a vari-
ety of language models (LMs) in terms of how well
their surprisal correlates with human reading be-
havior (Roark et al., 2009; Frank and Bod, 2011;
Fossum and Levy, 2012; Hale et al., 2018; Good-
kind and Bicknell, 2018; Aurnhammer and Frank,
2019; Merkx and Frank, 2020; Wilcox et al., 2020).
Such investigations could provide insights into the
development of a general computational model of

human language processing. For example, recent
studies reported that LMs with better performance
for next-word prediction could also better predict
the human reading behavior (i.e. more human-
like) (Fossum and Levy, 2012; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020).

In this paper, we re-examine whether the re-
cent findings on human-like computational mod-
els can be generalized across languages. Despite
the community’s ongoing search for a language-
independent model (Bender, 2011), existing stud-
ies have focused almost exclusively on the English
language. Having said that, broad-coverage cross-
linguistic evaluation of the existing reports is pro-
hibitively difficult. In fact, data on human reading
behavior (e.g., eye movement) is available only in
limited languages. As an initial foray, this study
focuses on the Japanese language as a representa-
tive of languages that have typologically different
characteristics from the English language. If the ob-
servation is different between English and Japanese,
the current findings on English data might lack a
universality across languages.

We specifically revisit the recent report—the

lower perplexity a LM has, the more human-like the

LM is—in the English and Japanese languages (Fos-
sum and Levy, 2012; Goodkind and Bicknell, 2018;
Wilcox et al., 2020). In addition to the importance
of cross-linguistic evaluation, the report itself is
worth investigating. Recent studies in the machine
learning field have reported that more parameters,
training data, and computation cost can result in
better PPL (Kaplan et al., 2020; Brown et al., 2020).
Our investigation has implications for whether a
human-like model might exist beyond such im-
provements.

More concretely, over three dozens of LMs were
trained for each language, with variants in their ar-
chitecture, training data size, and the number of pa-
rameter updates. Then, the surprisals computed by
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Figure 3: Separate effect of model architecture, training data size, and the number of parameter updates for LMs’
psychometric predictive power in each language. Each point corresponds to each LM. The box shows the quartiles
of the data. The whiskers show 1.5 times interquartile range.

LM (higher is better). The X-axis is PPL on a log
scale (lower is better).

Dundee Corpus: First, the results of the data
from the Dundee Corpus show a clear relationship
between PPL and psychometric predictive power;
namely, lower PPL corresponds to more psycho-
metric predictive power, as reported by prior stud-
ies (Goodkind and Bicknell, 2018; Wilcox et al.,
2020). Spearman’s rank correlation coefficient be-
tween the two metrics was �0.87.

BCCWJ-EyeTrack: By contrast, in BCCWJ-
EyeTrack, there was no clear, consistent trend be-
tween the PPL and psychometric predictive power.
While LMs with PPL over 400 show the correlation
between PPL and psychometric predictive power
(�0.68 with Spearman’s ⇢), there is a positive cor-
relation (0.53 with Spearman’s ⇢) for LMs with
PPL below 400. The positive correlation means
that the more accurately the LMs can predict the
upcoming word, the worse the psychometric predic-
tive power of the LMs is. These results demonstrate
the non-universality of the recent report across lan-
guages; lower perplexity is not always human-like.
The LSTM LM trained using the MD dataset with
1K updates achieved the best psychometric predic-
tive power. Notably, surprisal was effective for
gaze duration modeling in all the Japanese LMs.
�logLik scores were significantly higher than zero
with the chi-square test (p <0.05).

4.2 Model architectures, data sizes, number
of parameter updates

Which factor (e.g., model architecture, training data
size, and the number of parameter updates) charac-
terizes the psychometric predictive power of LMs?
Is the collection of effective factors consistent be-
tween the two languages? This study takes a more
in-depth look at the separate effects of (i) model
architecture, (ii) training data size, and (iii) the
number of parameter updates for the psychometric
predictive power.

Figure 3 summarizes the effect of each factor,
where the Y-axis denotes the psychometric pre-
dictive power. The most noticeable trend is that
Japanese LMs with a relatively fewer number of pa-
rameter updates (1K) have better psychometric pre-
dictive power than the other Japanese LMs (bottom
right part of Figure 3), while this trend does not ex-
ist in the English LMs (top right part). This implies
that the training objective of the LMs, maximizing
1
N

PN
i=1 logP (wi|w<i), had a negative impact on

the psychometric predictive power of LMs, at least
in Japanese. We discuss this point in Section 4.3.

To quantitatively test the differences in Figure 3,
a linear regression model was trained to estimate
psychometric predictive power with the factors of
the model architecture, the training data size, and
the parameter update number in each language.
The training data size and the parameter update
number are represented as logarithmically trans-
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• Previously reported monotonic relationship between LM scaling and PPP 
was fragile

• Just changing the language (En->Ja) breaks it, empirically
• Reading times and surprisals in the Japanese language (Subject-Object-Verb; SOV word 

order) have a large intra-sentential variance (i.e., low uniform information density), 
and LM-surprisal could not capture this variation well

24
Figure 1: The entropy trajectories and corresponding information profiles for the event (ALICE,
EAT, APPLE) in our toy world, for three different word orders. Dotted lines indicate the ideal
trajectory and profile according to the UID hypothesis. Observe that word orders in which the
object preceeds the verb have significant “troughs” in their information profiles, making them far
from ideal. This pattern arises because of the event structure in our toy world; our question is what
word orders are optimal given real-world event structure.

knowledge of the object in this world uniquely determines the verb (since foods are strictly eaten
and drinks are strictly drunk). Thus, any word order that places O before V renders the verb entirely
uninformative, in significant conflict with the UID hypothesis.

To formalize the intuitive notion of distance from the UID ideal we define the UID deviation score
D(I) of any given information profile I = (I1, I2, I3). D(I) is given by the formula:

D(I) =
3

4

3X

i=1

����
Ii

H0
�

1

3

���� . (2)

It is easy to verify that the UID ideal information profile, with I1 = I2 = I3, has a deviation score
of zero, and the least-ideal profile, in which all information is conveyed by a single word, has a
deviation score of 1.

The UID deviation score allow us, for each event in the model world, to produce both an ordering of
the word orders from “most UID-like” to “least UID-like”, as well as a quantitative measure of the
extent to which each word order approaches uniform information density. We can straightforwardly
calculate a mean deviation score for the entire model world, by summing the scores for each indi-
vidual event and weighting by that event’s probability according to the event distribution P . This
lets us assess the extent to which each word order is UID-suited to a given world. For our toy world,
the ordering of word orders from lowest to highest mean deviation score is: VSO, VOS, SVO, OVS,
SOV, OSV.

Of course, our toy world is a highly contrived example, and so there is no reason to expect it to
produce the observed cross-linguistic distribution of word orders. This is because we constructed the
artificial P distribution to be pedagogically useful, not to reflect the real-world distribution of events.
The toy example is intended only as a demonstration of the core idea underlying our hypothesis: that
different choices of word order map the same probabilistic structure of the world (P ) onto different
information profiles. Since these profiles have differing levels of information density uniformity, the
UID hypothesis implies a preference ranking of word orders.

What are the mean deviation scores when the event distribution P more accurately approximates re-
ality? Does the preferred ranking of word orders implied by the UID hypothesis reflect the observed
cross-linguistic distribution of word orders? We investigate these questions in the rest of the paper.

3 Corpus analysis

Our work above implies that a particular word ordering in a language is good to the extent that it
produces minimal UID deviation scores for events in the world. Accordingly, it would be ideal to
assess the optimality of a particular word ordering with respect to the true distribution over “psy-
chologically meaningful” events in the everyday environment. Although we do not have access to
this distribution, we may be able to construct sensible approximations. One option is to assume that
spontaneous speech is informative about event probabilities – that the probability with which speak-
ers discuss an event is roughly proportional to the actual frequency or psychological importance of
that event. Guided by this assumption, in this section we estimate P on the basis of child-directed
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Figure 2: Relationship between PPL (X-axis) and psychometric predictive power, i.e., �LogLik (Y-axis) in the
English and Japanese languages. Each point corresponds to each LM. A low score on the X-axis indicates the
high linguistic accuracy of the model. The PPL was calculated on the eye movement data, and the LMs with PPL
more than 106 were excluded from the figure. A high score on the Y-axis indicates that the model has a high
psychometric predictive power. Note that the X-axis is on a log scale.

GD ⇠ surprisal+ surprisal prev 1

+ surprisal prev 2+ freq ⇤ length
+ freq prev 1 ⇤ length prev 1

+ screenN+ lineN+ segmentN

+ (1|article)+ (1|subj) .

(3)

The regression model includes baseline factors
(e.g., frequency of a segment) that are of no in-
terest in the comparison of LMs. A collection of
factors used in the existing studies (Asahara et al.,
2016; Wilcox et al., 2020) were initially examined
and the factors that were not significant (p > 0.05)
for gaze duration modeling both in the Dundee
Corpus and BCCWJ-EyeTrack were excluded. The
frequency of a segment (freq) was calculated us-
ing the entire training data for LMs. Appendix B
shows the details of each factor in Eq. 3.

In English experiments, surprisals of pre-
ceding words (surprisal prev 1 and
surprisal prev 2) were included in order to
handle the spillover effect (the processing cost
of a certain segment is affected by its preceding
segments) (Rayner and Well, 1996; Smith and
Levy, 2013). In Japanese experiments, the
surprisals of preceding words were not included
because our preliminary experiment showed that
these factors were not significantly effective for
modeling gaze duration in the BCCWJ-EyeTrack.5

5The reason is probably that a Japanese phrasal unit (i.e.,
bunsetsu) could be a larger unit than an English word.

All the regression models used in our experiments
were converged.

To isolate the effect of surprisal for gaze du-
ration modeling, a baseline regression model
was trained without surprisal information (exclud-
ing the surprisal, surprisal prev 1, and
surprisal prev 2 terms from Eq. 3). Follow-
ing Wilcox et al. (2020), the mean by-segment dif-
ference of log-likelihood between the model using
surprisal values (Eq. 3) and the baseline model
was calculated. Henceforth, this metric is called
�LogLik. When surprisal from a LM is not ef-
fective for gaze duration modeling, the �LogLik
score becomes zero. A high �LogLik means that
the surprisal values obtained by the LM are effec-
tive for modeling gaze duration (i.e., the LM has a
high psychometric predictive power).

4 Experiments

The relationship between PPL and psychometric
predictive power is investigated. Furthermore, the
relationship is analyzed with respect to the training
configures of LMs (e.g., the number of parameter
updates). Then, we discuss the results from the per-
spective of the uniformity of information density.

4.1 Psychometric predictive power and PPL
Figure 2 shows the relationship between PPL and
psychometric predictive power (i.e., �LogLik) of
LMs in each of the languages. Each point cor-
responds to each LM, and a score on the Y-axis
indicates the psychometric predictive power of a
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Of course, our toy world is a highly contrived example, and so there is no reason to expect it to
produce the observed cross-linguistic distribution of word orders. This is because we constructed the
artificial P distribution to be pedagogically useful, not to reflect the real-world distribution of events.
The toy example is intended only as a demonstration of the core idea underlying our hypothesis: that
different choices of word order map the same probabilistic structure of the world (P ) onto different
information profiles. Since these profiles have differing levels of information density uniformity, the
UID hypothesis implies a preference ranking of word orders.

What are the mean deviation scores when the event distribution P more accurately approximates re-
ality? Does the preferred ranking of word orders implied by the UID hypothesis reflect the observed
cross-linguistic distribution of word orders? We investigate these questions in the rest of the paper.

3 Corpus analysis

Our work above implies that a particular word ordering in a language is good to the extent that it
produces minimal UID deviation scores for events in the world. Accordingly, it would be ideal to
assess the optimality of a particular word ordering with respect to the true distribution over “psy-
chologically meaningful” events in the everyday environment. Although we do not have access to
this distribution, we may be able to construct sensible approximations. One option is to assume that
spontaneous speech is informative about event probabilities – that the probability with which speak-
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The regression model includes baseline factors
(e.g., frequency of a segment) that are of no in-
terest in the comparison of LMs. A collection of
factors used in the existing studies (Asahara et al.,
2016; Wilcox et al., 2020) were initially examined
and the factors that were not significant (p > 0.05)
for gaze duration modeling both in the Dundee
Corpus and BCCWJ-EyeTrack were excluded. The
frequency of a segment (freq) was calculated us-
ing the entire training data for LMs. Appendix B
shows the details of each factor in Eq. 3.

In English experiments, surprisals of pre-
ceding words (surprisal prev 1 and
surprisal prev 2) were included in order to
handle the spillover effect (the processing cost
of a certain segment is affected by its preceding
segments) (Rayner and Well, 1996; Smith and
Levy, 2013). In Japanese experiments, the
surprisals of preceding words were not included
because our preliminary experiment showed that
these factors were not significantly effective for
modeling gaze duration in the BCCWJ-EyeTrack.5

5The reason is probably that a Japanese phrasal unit (i.e.,
bunsetsu) could be a larger unit than an English word.

All the regression models used in our experiments
were converged.

To isolate the effect of surprisal for gaze du-
ration modeling, a baseline regression model
was trained without surprisal information (exclud-
ing the surprisal, surprisal prev 1, and
surprisal prev 2 terms from Eq. 3). Follow-
ing Wilcox et al. (2020), the mean by-segment dif-
ference of log-likelihood between the model using
surprisal values (Eq. 3) and the baseline model
was calculated. Henceforth, this metric is called
�LogLik. When surprisal from a LM is not ef-
fective for gaze duration modeling, the �LogLik
score becomes zero. A high �LogLik means that
the surprisal values obtained by the LM are effec-
tive for modeling gaze duration (i.e., the LM has a
high psychometric predictive power).

4 Experiments

The relationship between PPL and psychometric
predictive power is investigated. Furthermore, the
relationship is analyzed with respect to the training
configures of LMs (e.g., the number of parameter
updates). Then, we discuss the results from the per-
spective of the uniformity of information density.

4.1 Psychometric predictive power and PPL
Figure 2 shows the relationship between PPL and
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LMs in each of the languages. Each point cor-
responds to each LM, and a score on the Y-axis
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each story or article did not fit into a single
context window for the LMs, the second half
of the previous context window served as the
first half of a new context window to calculate
surprisal estimates for the remaining tokens. In
practice, most stories and articles fit completely
within two context windows for the GPT-2 mod-
els that have a context size of 1,024 tokens, and
within one context window for the GPT-Neo and
OPT models that have a context size of 2,048
tokens. Additionally, when a single word wt was
tokenized into multiple subword tokens, nega-
tive log probabilities of subword tokens corre-
sponding to wt were added together to calculate
S(wt) = − log P(wt | w1..t−1).

3.3 Regression Modeling
Subsequently, following the methods of Oh et al.
(2022), a ‘baseline’ LME model that contains
baseline predictors capturing low-level cognitive
processing and seventeen ‘full’ LME models that
contain the baseline predictors and each LM sur-
prisal predictor were fit to the exploratory set of
self-paced reading times and go-past durations
using lme4 (Bates et al., 2015). The baseline pre-
dictors include word length measured in characters
and index of word position within each sentence
(both self-paced reading and eye-tracking), as well
as saccade length and whether or not the previous
word was fixated (eye-tracking only).

All predictors were centered and scaled prior
to model fitting, and the LME models included
by-subject random slopes for all fixed effects as
well as random intercepts for each subject and
each word type. Additionally, for self-paced read-
ing times collected from 181 subjects, a random
intercept for each subject-sentence interaction was
included. For eye-gaze durations collected from
a much smaller number of 10 subjects, a random
intercept for each sentence was included.

After the regression models were fit, the ∆LL
values were first calculated for each regression
model by subtracting the log-likelihood of the
baseline model from that of a full regression
model. Moreover, to examine the trend between
LM perplexity and predictive power of surprisal
estimates, the perplexity of each LM variant was
calcuated on the two corpora.

3.4 Results
The results in Figure 1 show that surprisal from
the smallest variant (i.e., GPT-2 Small, GPT-Neo

Figure 1: Perplexity measures from each LM variant,
and improvements in regression model log-likelihood
from including each surprisal estimate on the ex-
ploratory set of Natural Stories (top) and Dundee data
(bottom). Dotted lines indicate the least-squares re-
gression line for each LM family.

125M, and OPT 125M) made the biggest contri-
bution to regression model fit on both self-paced
reading times and eye-gaze durations for the
three LM families. More notably, surprisal esti-
mates from larger LM variants within each family
yielded strictly poorer fits to reading times, ro-
bustly replicating the trend observed by Oh et al.
(2022). Interestingly, the three LM families also
seem to demonstrate a strong log-linear relation-
ship between perplexity and ∆LL, as can be seen
by the least-squares regression lines. All regres-
sion lines had a slope significantly greater than 0
at p < 0.05 level according to a one-tailed t-test,
with the exception of the regression line for GPT-2
on Natural Stories (p = 0.07). This trend is highly
significant overall by a binomial test (five results
with p < 0.05 out of six trials), and directly con-
tradicts the findings of recent studies that report a
negative correlation between LM perplexity and
predictive power of surprisal estimates.
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Abstract
Language models (LMs) have been used in cog-
nitive modeling as well as engineering studies—
they compute information-theoretic complexity
metrics that simulate humans’ cognitive load
during reading. This study highlights a lim-
itation of modern neural LMs as the model
of choice for this purpose: there is a discrep-
ancy between their context access capacities
and that of humans. Our results showed that
constraining the LMs’ context access improved
their simulation of human reading behavior. We
also showed that LM-human gaps in context
access were associated with specific syntactic
constructions; incorporating syntactic biases
into LMs’ context access might enhance their
cognitive plausibility.1

1 Introduction
In computational psycholinguistics, human read-
ing behavior has been compared with various
complexity metrics to understand human sentence
processing (Crocker, 2007). Having historically
started from simple measures such as word length,
surprisal (� log p(word|context)) computed by
language models (LMs) has become a common
choice (Levy, 2008; Smith and Levy, 2013). On
top of this, the next question arises—which model
implementation and/or algorithm can compute sur-
prisal that successfully simulates human behavior?
In this line of research, modern neural LMs such
as Transformer (Vaswani et al., 2017) have been
analyzed with respect to their cognitive plausibil-
ity (Wilcox et al., 2020; Merkx and Frank, 2021;
Kuribayashi et al., 2021).

Despite their use in cognitive modeling, such
modern LM architectures (e.g., self-attention) are,
arguably, an unnatural choice when it comes to
human cognitive constraints; modern LM architec-
tures assume powerful, parallel access to a vast

1Our codes are available at � https://github.
com/kuribayashi4/context_limitation_cognitive_
modeling

Figure 1: Relationship between psychometric predictive
power (PPP) of language models (LMs) and their con-
text access constraints. LMs with less context access
better simulate human reading behavior (higher PPP).
The marker color/shape indicates LM settings; colored
areas present one standard deviation of PPP.

number of context tokens, while humans might
have limited and selective context access (Hawkins,
1994; Gibson, 1998, 2000; Lewis et al., 2006).
Searching for a computational model that better
simulates human sentence processing than previ-
ously examined ones, we hypothesized that intro-
ducing such context limitations can improve LMs’
estimation of human cognitive load.

Specifically, as a starting point, we applied an
n-gram-ification trick to neural LMs mimicking
loading for long context access (locality effects)
and compared their surprisal with human reading
behavior data. Despite the simple context limita-
tion design, our experiments with 280 settings (40
LM settings⇥7 noise patterns) showed that the ad-
vantage of a shorter context was consistent among

10421
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lar comparison because the differences between
Transformers and RNNs are more fundamental
than among RNN types. All code used for the
training of the neural networks and the anal-
ysis is available at https://github.com/
DannyMerkx/next_word_prediction

2 Background

2.1 Human Sentence Processing

Why are some words more difficult to process than
others? It has long been known that more pre-
dictable words are generally read faster and are
more likely to be skipped than less predictable
words (Ehrlich and Rayner, 1981). Predictabil-
ity has been formalised as surprisal, which can
be derived from LMs. Neural network LMs are
trained to predict the next word given all previous
words in the sequence. After training, the LM can
assign a probability to a word: it has an expecta-
tion of a word w at position t given the preced-
ing words w1, ..., wt�1. The word’s surprisal then
equals � logP (wt|w1, ..., wt�1).

Hale (2001) and Levy (2008) related surprisal
to human word processing effort in sentence com-
prehension. In psycholinguistics, reading times are
commonly taken as a measure of word process-
ing difficulty, and the positive correlation between
reading time and surprisal has been firmly estab-
lished (Mitchell et al., 2010; Monsalve et al., 2012;
Smith and Levy, 2013). The N400, a brain poten-
tial peaking around 400 ms after stimulus onset
and associated with semantic incongruity (Kutas
and Hillyard, 1980), has been shown to correlate
with word surprisal in both EEG and MEG studies
(Frank et al., 2015; Wehbe et al., 2014).

In this paper, we compare RNN and Transformer-
based LMs on their ability to predict reading time
and N400 amplitude. Likewise, Aurnhammer and
Frank (2019) compared SRNs, LSTMs and GRUs
on human reading data from three psycholinguistic
experiments. Despite the GRU and LSTM gener-
ally outperforming the SRN on NLP tasks, they
found no difference in how well the models’ sur-
prisal predicted self-paced reading, eye-tracking
and EEG data.

2.2 Comparing RNN and Transformer

According to (Levy, 2008), surprisal acts as a
‘causal bottleneck’ in the comprehension process,
which implies that predictions of human processing
difficulty only depend on the model architecture

Figure 1: Comparison of sequential information flow
through the Transformer and RNN, trained on next-
word prediction.

through the estimated word probabilities. Here we
briefly highlight the difference in how RNNs and
Transformers process sequential information. The
activation flow through the networks is represented
in Figure 1.1

In an RNN, incoming information is immedi-
ately processed and represented as a hidden state.
The next token in the sequence is again immedi-
ately processed and combined with the previous
hidden state to form a new hidden state. Across
layers, each time-step only sees the corresponding
hidden state from the previous layer in addition
to the hidden state of the previous time-step, so
processing is immediate and incremental. Infor-
mation from previous time-steps is encoded in the
hidden state, which is limited in how much it can
encode so decay of previous time-steps is implicit
and difficult to avoid. In contrast, the Transformer’s
attention layer allows each input to directly receive
information from all previous time-steps.2 This ba-
sically unlimited memory is a major conceptual dif-
ference with RNNs. Processing is not incremental
over time: Processing of word wt is not dependent
on hidden states H1 through Ht�1 but on the unpro-
cessed inputs w1 through wt�1. Consequently, the
Transformer cannot use implicit order information,
rather, explicit order information is added to the
input.

However, a uni-directional Transformer can also
use implicit order information as long as it has
multiple layers. Consider H1,3 in the first layer
which is based on w1, w2 and w3. Hidden state

1Note that the figure only shows how activation is propa-
gated through time and across layers, not how specific architec-
tures compute the hidden states (see Elman (1990); Hochreiter
and Schmidhuber (1997); Cho et al. (2014); Vaswani et al.
(2017) for specifics on the SRN, LSTM, GRU and Trans-
former, respectively).

2Language modelling is trivial if the model also receives
information from future time-steps, as is commonly allowed in
Transformers. Our Transformer is thus uni-directional, which
is achieved by applying a simple mask to the input.

[Merkx&Frank, 21]
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Abstract
Language models (LMs) have been used in cog-
nitive modeling as well as engineering studies—
they compute information-theoretic complexity
metrics that simulate humans’ cognitive load
during reading. This study highlights a lim-
itation of modern neural LMs as the model
of choice for this purpose: there is a discrep-
ancy between their context access capacities
and that of humans. Our results showed that
constraining the LMs’ context access improved
their simulation of human reading behavior. We
also showed that LM-human gaps in context
access were associated with specific syntactic
constructions; incorporating syntactic biases
into LMs’ context access might enhance their
cognitive plausibility.1

1 Introduction
In computational psycholinguistics, human read-
ing behavior has been compared with various
complexity metrics to understand human sentence
processing (Crocker, 2007). Having historically
started from simple measures such as word length,
surprisal (� log p(word|context)) computed by
language models (LMs) has become a common
choice (Levy, 2008; Smith and Levy, 2013). On
top of this, the next question arises—which model
implementation and/or algorithm can compute sur-
prisal that successfully simulates human behavior?
In this line of research, modern neural LMs such
as Transformer (Vaswani et al., 2017) have been
analyzed with respect to their cognitive plausibil-
ity (Wilcox et al., 2020; Merkx and Frank, 2021;
Kuribayashi et al., 2021).

Despite their use in cognitive modeling, such
modern LM architectures (e.g., self-attention) are,
arguably, an unnatural choice when it comes to
human cognitive constraints; modern LM architec-
tures assume powerful, parallel access to a vast

1Our codes are available at � https://github.
com/kuribayashi4/context_limitation_cognitive_
modeling
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Figure 1: Relationship between psychometric predictive
power (PPP) of language models (LMs) and their con-
text access constraints. LMs with less context access
better simulate human reading behavior (higher PPP).
The marker color/shape indicates LM settings; colored
areas present one standard deviation of PPP.

number of context tokens, while humans might
have limited and selective context access (Hawkins,
1994; Gibson, 1998, 2000; Lewis et al., 2006).
Searching for a computational model that better
simulates human sentence processing than previ-
ously examined ones, we hypothesized that intro-
ducing such context limitations can improve LMs’
estimation of human cognitive load.

Specifically, as a starting point, we applied an
n-gram-ification trick to neural LMs mimicking
loading for long context access (locality effects)
and compared their surprisal with human reading
behavior data. Despite the simple context limita-
tion design, our experiments with 280 settings (40
LM settings⇥7 noise patterns) showed that the ad-
vantage of a shorter context was consistent among
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ing behavior has been compared with various
complexity metrics to understand human sentence
processing (Crocker, 2007). Having historically
started from simple measures such as word length,
surprisal (� log p(word|context)) computed by
language models (LMs) has become a common
choice (Levy, 2008; Smith and Levy, 2013). On
top of this, the next question arises—which model
implementation and/or algorithm can compute sur-
prisal that successfully simulates human behavior?
In this line of research, modern neural LMs such
as Transformer (Vaswani et al., 2017) have been
analyzed with respect to their cognitive plausibil-
ity (Wilcox et al., 2020; Merkx and Frank, 2021;
Kuribayashi et al., 2021).

Despite their use in cognitive modeling, such
modern LM architectures (e.g., self-attention) are,
arguably, an unnatural choice when it comes to
human cognitive constraints; modern LM architec-
tures assume powerful, parallel access to a vast
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number of context tokens, while humans might
have limited and selective context access (Hawkins,
1994; Gibson, 1998, 2000; Lewis et al., 2006).
Searching for a computational model that better
simulates human sentence processing than previ-
ously examined ones, we hypothesized that intro-
ducing such context limitations can improve LMs’
estimation of human cognitive load.

Specifically, as a starting point, we applied an
n-gram-ification trick to neural LMs mimicking
loading for long context access (locality effects)
and compared their surprisal with human reading
behavior data. Despite the simple context limita-
tion design, our experiments with 280 settings (40
LM settings⇥7 noise patterns) showed that the ad-
vantage of a shorter context was consistent among
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• Instruction-tuning and/or meta-linguistic prompting (“Let’s predict language 
processing cost!”) did not improve PPP

• Vanilla surprisal from base LMs (w/o tuning) predicts human data the best
• Human real-time processing seem to be simply tuned to statistics of next-word probability

Kuribayashi+24 (NAACL)

Scaling up neural LMs

Fit of LM surprisal 
to human data

Kuribayashi+24, 
NAACL

Why? 2

832  Frank, Bod 

Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Abstract

Instruction tuning aligns the response of large
language models (LLMs) with human prefer-
ences. Despite such efforts in human–LLM
alignment, we find that instruction tuning
does not always make LLMs human-like
from a cognitive modeling perspective. More
specifically, next-word probabilities estimated
by instruction-tuned LLMs are often worse
at simulating human reading behavior than
those estimated by base LLMs. In addition,
we explore prompting methodologies for
simulating human reading behavior with LLMs.
Our results show that prompts reflecting a
particular linguistic hypothesis improve
psychometric predictive power, but are still
inferior to small base models. These findings
highlight that recent advancements in LLMs,
i.e., instruction tuning and prompting, do not
offer better estimates than direct probability
measurements from base LLMs in cognitive
modeling. In other words, pure next-word
probability remains a strong predictor for hu-
man reading behavior, even in the age of LLMs.

https://github.com/kuribayashi4/
llm-cognitive-modeling

1 Introduction

Aligning computational models with human per-
ception/cognition has historically been a pivotal ap-
proach to understanding humans (Shapiro, 2003).
With this in mind, computational psycholinguis-
tics has investigated the model of human sentence
processing (Crocker, 2007) and recently found an
intriguing correlation between next-word proba-
bilities from language models (LMs) and human
reading behavior—the less predictable a word is,
the greater the cognitive load (e.g., longer reading
time) humans exhibit—suggesting the expectation-
based account of human sentence processing (Levy,
2008; Smith and Levy, 2013). Based on this find-
ing, the field has further investigated which types
of models/algorithms can compute probabilities

Figure 1: Comparing the “reading behavior” of hu-
mans and LLMs, i.e., reading time from humans is
compared with surprisal from LLMs (§2.1). We in-
vestigate which surprisal values estimated by: (i) base
LLMs, (ii) instruction-tuned (IT) LLMs, (iii) IT-LLMs
with prompting, or (iv) IT-LLMs with metalinguistic
prompting can better simulate human reading time.

better aligned with human reading behavior (Fig-
ure 1; Hale (2001); Goodkind and Bicknell (2018);
Wilcox et al. (2020); Oh et al. (2021); Kuribayashi
et al. (2022); inter alia).

In the field of natural language processing (NLP),
in contrast, large language models (LLMs) tuned
to human-preferred responses (e.g., GPT-3.5) im-
prove in performance across a wide range of appli-
cations (Ouyang et al., 2022). Given the increas-
ing prevalence of such human-aligned, instruction-

tuned LLMs (IT-LLMs), the following computa-
tional psycholinguistic question naturally arises:
do IT-LLMs successfully simulate human reading

behavior in terms of predicted surprisal? The
answer to this question is not immediately ob-
vious. On the one hand, the answer might be
yes since these are tuned to human-preferred re-
sponses (Zhang et al., 2023), which will be, broadly

ar
X

iv
:2

31
1.

07
48

4v
3 

 [c
s.C

L]
  1

5 
A

pr
 2

02
4

28



• Gaze duration is very fast (~200ms/word) and may reflect early-stage 
processing of language.

• Where should such fast processing be realized in LLMs?
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Abstract

Recent cognitive modeling studies have re-
ported that larger language models (LMs)
exhibit a poorer fit to human reading be-
havior (Oh and Schuler, 2023b; Shain et al.,
2024; Kuribayashi et al., 2024), leading to
claims of their cognitive implausibility. In
this paper, we revisit this argument through
the lens of mechanistic interpretability and
argue that prior conclusions were skewed
by an exclusive focus on the final layers
of LMs. Our analysis reveals that next-
word probabilities derived from internal lay-
ers of larger LMs align with human sen-
tence processing data as well as, or better
than, those from smaller LMs. This align-
ment holds consistently across behavioral
(self-paced reading times, gaze durations,
MAZE task processing times) and neuro-
physiological (N400 brain potentials) mea-
sures, challenging earlier mixed results and
suggesting that the cognitive plausibility of
larger LMs has been underestimated. Fur-
thermore, we first identify an intriguing re-
lationship between LM layers and human
measures: earlier layers correspond more
closely with fast gaze durations, while later
layers better align with relatively slower sig-
nals such as N400 potentials and MAZE
processing times. Our work opens new av-
enues for interdisciplinary research at the
intersection of mechanistic interpretability
and cognitive modeling.

1 Introduction

Understanding human sentence processing has
long been a fundamental goal in linguistics. This
goal is typically approached by investigating what
computational models can simulate human sen-
tence processing data, such as eye movement pat-
terns during reading, in the field of computational
psycholinguistics (Crocker, 2007; Beinborn and

Figure 1: Different measures of human sentence
processing align with surprisal from different lay-
ers of language models (LMs), and the best layer
is typically not the final one. Larger LMs can bet-
ter simulate human reading data with their internal
layer than smaller LMs.

Hollenstein, 2024). Natural language process-
ing (NLP) models, such as neural language mod-
els (LMs), have played a crucial role in this en-
deavor, serving as tools to test linguistic hypothe-
ses. Specifically, the theory of expectation-based
human sentence processing (Hale, 2001; Levy,
2008; Smith and Levy, 2013) — which posits that
humans continuously predict upcoming linguistic
information during reading — naturally raises the
following questions: how well do word probabil-
ities (i.e., surprisal, � log p(word|context)) de-
rived from LMs align with human sentence pro-
cessing behavior? What kind of LMs produce the
most human-like surprisal?

Previous studies have provided substantial ev-
idence supporting expectation-based accounts of
human sentence processing (Shain et al. 2024; in-
ter alia). However, they reveal an intriguing trend:
surprisal estimates from large language models
(LLMs) often deviate from human reading behav-
ior, and rather smaller models, such as GPT-2
small, offer better simulations of human behav-
ior (Shain et al., 2024; Oh and Schuler, 2023b;
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ )� Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Abstract

Pre-trained text encoders have rapidly ad-
vanced the state of the art on many NLP
tasks. We focus on one such model, BERT,
and aim to quantify where linguistic informa-
tion is captured within the network. We find
that the model represents the steps of the tra-
ditional NLP pipeline in an interpretable and
localizable way, and that the regions respon-
sible for each step appear in the expected se-
quence: POS tagging, parsing, NER, semantic
roles, then coreference. Qualitative analysis
reveals that the model can and often does ad-
just this pipeline dynamically, revising lower-
level decisions on the basis of disambiguating
information from higher-level representations.

1 Introduction

Pre-trained sentence encoders such as ELMo (Pe-
ters et al., 2018a) and BERT (Devlin et al., 2019)
have rapidly improved the state of the art on many
NLP tasks, and seem poised to displace both static
word embeddings (Mikolov et al., 2013) and dis-
crete pipelines (Manning et al., 2014) as the basis
for natural language processing systems. While
this has been a boon for performance, it has come
at the cost of interpretability, and it remains un-
clear whether such models are in fact learning the
kind of abstractions that we intuitively believe are
important for representing natural language, or are
simply modeling complex co-occurrence statis-
tics.

A wave of recent work has begun to “probe”
state-of-the-art models to understand whether they
are representing language in a satisfying way.
Much of this work is behavior-based, designing
controlled test sets and analyzing errors in order
to reverse-engineer the types of abstractions the
model may or may not be representing (e.g. Con-
neau et al., 2018; Marvin and Linzen, 2018; Poliak
et al., 2018). Parallel efforts inspect the structure

of the network directly, to assess whether there
exist localizable regions associated with distinct
types of linguistic decisions. Such work has pro-
duced evidence that deep language models can en-
code a range of syntactic and semantic informa-
tion (e.g. Shi et al., 2016; Belinkov, 2018; Ten-
ney et al., 2019), and that more complex structures
are represented hierarchically in the higher layers
of the model (Peters et al., 2018b; Blevins et al.,
2018).

We build on this latter line of work, focusing
on the BERT model (Devlin et al., 2019), and use
a suite of probing tasks (Tenney et al., 2019) de-
rived from the traditional NLP pipeline to quantify
where specific types of linguistic information are
encoded. Building on observations (Peters et al.,
2018b) that lower layers of a language model en-
code more local syntax while higher layers capture
more complex semantics, we present two novel
contributions. First, we present an analysis that
spans the common components of a traditional
NLP pipeline. We show that the order in which
specific abstractions are encoded reflects the tradi-
tional hierarchy of these tasks. Second, we quali-
tatively analyze how individual sentences are pro-
cessed by the BERT network, layer-by-layer. We
show that while the pipeline order holds in ag-
gregate, the model can allow individual decisions
to depend on each other in arbitrary ways, de-
ferring ambiguous decisions or revising incorrect
ones based on higher-level information.

2 Model

Edge Probing. Our experiments are based on
the “edge probing” approach of Tenney et al.
(2019), which aims to measure how well infor-
mation about linguistic structure can be extracted
from a pre-trained encoder. Edge probing decom-
poses structured-prediction tasks into a common
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on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).
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Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P
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⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ )� Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Eliciting Latent Predictions from Transformers with the Tuned Lens

Nora Belrose 1 2 Igor Ostrovsky 1 Lev McKinney 3 2 Zach Furman 1 4 Logan Smith 1 Danny Halawi 1

Stella Biderman 1 Jacob Steinhardt 5

Abstract
We analyze transformers from the perspective of
iterative inference, seeking to understand how
model predictions are refined layer by layer. To
do so, we train an affine probe for each block in
a frozen pretrained model, making it possible to
decode every hidden state into a distribution over
the vocabulary. Our method, the tuned lens, is a
refinement of the earlier “logit lens” technique,
which yielded useful insights but is often brittle.
We test our method on various autoregressive
language models with up to 20B parameters,
showing it to be more predictive, reliable and
unbiased than the logit lens. With causal ex-
periments, we show the tuned lens uses sim-
ilar features to the model itself. We also
find the trajectory of latent predictions can be
used to detect malicious inputs with high ac-
curacy. All code needed to reproduce our re-
sults can be found at https://github.com/
AlignmentResearch/tuned-lens.

1. Introduction
The impressive performance of transformers in natural lan-
guage processing (Brown et al., 2020) and computer vision
(Dosovitskiy et al., 2020) suggests that their internal repre-
sentations have rich structure worthy of scientific investiga-
tion. One common approach is to train classifiers to extract
specific concepts from hidden states, like part-of-speech
and syntactic structure (Hewitt and Manning, 2019; Tucker
et al., 2021; Li et al., 2022).

In this work, we instead examine transformer representa-
tions from the perspective of iterative inference (Jastrzębski
et al., 2017). Specifically, we view each layer in a trans-
former language model as performing an incremental update
to a latent prediction of the next token.1 We decode these la-
tent predictions through early exiting, converting the hidden

1Eleuther AI 2FAR AI 3University of Toronto 4Boston
University 5UC Berkeley. Correspondence to: Nora Belrose
<nora@eleuther.ai>.

1See Appendix C for evidence supporting this view, including
novel empirical results of our own.
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Figure 1. Comparison of our method, the tuned lens (bottom), with
the “logit lens” (top) for GPT-Neo-2.7B prompted with an except
from the abstract of Vaswani et al. (2017). Each cell shows the
top-1 token predicted by the model at the given layer and token
index. The logit lens fails to elicit interpretable predictions before
layer 21, but our method succeeds.

state at each intermediate layer into a distribution over the
vocabulary. This yields a sequence of distributions we call
the prediction trajectory, which exhibits a strong tendency
to converge smoothly to the final output distribution, with
each successive layer achieving lower perplexity.

We build on the “logit lens” (nostalgebraist, 2020), an early
exiting technique that directly decodes hidden states into
vocabulary space using the model’s pretrained unembed-
ding matrix. We find the logit lens to be unreliable (Sec-
tion 2), failing to elicit plausible predictions for models like
BLOOM (Scao et al., 2022) and GPT Neo (Black et al.,
2021). Even when the logit lens appears to work, its outputs
are hard to interpret due to representational drift: features
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Figure 2: Relationships between layer depth (x-axis) and �LL (y-axis) for each LM in two datasets:
FPGD in DC and SPR in NS. The graphs are separated by model families and data. The best/last layer
is indicated with a red/black edge line. The graph starts at the first layer, not at the embedding layer.

Cost(wt) ⇠ surprisal(wt) + surprisal(wt�1)

+ surprisal(wt�2)

+ length(wt) + freq(wt)

+ length(wt�1) + freq(wt�1)

+ length(wt�2) + freq(wt�2) . (1)
surprisal(wt) = � log p(wt|w<t) . (2)

Here, wt is t-th word in a text, and w<t =

[w1, · · · , wt�1] is its context. Length and uni-
gram frequency of words are included as base-
line factors,4 and surprisal(wt�1) 2 R�0 and
surprisal(wt�2) 2 R�0 are also added to account
for spillover effects. This model design follows re-
cent studies (Wilcox et al., 2023b; Pimentel et al.,
2023),5. We used statsmodels package (Seabold
and Perktold, 2010).

We trained linear regression models both with
and without surprisal(wt), and we report the dif-
ference in the goodness of fit measured by log-
likelihood (� log-likelihood; �LL). This indi-
cates how strongly surprisal contributes to predict-
ing human sentence processing data, i.e., higher
�LL is better. The key question is which LM layer
computes surprisal with better �LL.

Note that we used the same baseline factors
across all datasets/models for a fair comparison,
except for electrode random effects for Michaelov
et al. (2024b)’s EEG data. As is common in
preprocessing, we exclude data points with zero
SPR/FPGD/MAZE. Human data for each token
in the corpus were averaged across subjects prior

4Word length follows character number, and word fre-
quency is estimated with word_freq (Speer, 2022).

5For N400 data, we added baseline amplitude feature.

to analysis, following recent practices (Pimentel
et al., 2023; Oh and Schuler, 2023b; Kuribayashi
et al., 2024; de Varda et al., 2024).

3.4 Probabilities from internal layers

Let us begin with the simplest method of logit-
lens (nostalgebraist, 2020) to extract the probabil-
ity of a word wt from model internals. Given a d-
dimentaional internal representation hl,t 2 Rd at
the l-th layer and time step t, the probability of a
word wt in its context w<t is obtained as follows:

p(wt|w<t;hl,t) = LogitLens(hl,t)[id(wt)]

= softmax(LayerNorm(hl,t)WU )[id(wt)], (3)

where WU 2 Rd⇥|V| is an unembedding matrix
obtained from LM’s output layer, and |V| 2 R
is model’s vocabulary size. Simply put, the inter-
nal representaion hl,t is mapped into output vo-
cabulary space by applying WU (i.e., skipping
subsequent layers [hl+1,t, · · · ,hlast,t]), and next-
word probability is obtained in that space. The
obtained probability (Eq. 3) is first transformed
to surprisal (Eq. 2), and then used in the regres-
sion model to predict human reading data (Eq. 1).
LayerNorm(·) in Eq. 3 is the layer normalization
at the last layer, and [id(wt)] extracts the probabil-
ity for wt

6 from the probability distribution over
V , obtained through the softmax(·) : R|V| !
[0, 1]|V| function.

Building on the logit-lens, Belrose et al. (2023)
extended the method into tuned-lens to handle

6If a word is split into multiple subwords, accumulated
surprisal is used. See Eq.2 in Kuribayashi et al. (2021).
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Figure 2: Relationships between layer depth (x-axis) and �LL (y-axis) for each LM in two datasets:
FPGD in DC and SPR in NS. The graphs are separated by model families and data. The best/last layer
is indicated with a red/black edge line. The graph starts at the first layer, not at the embedding layer.

Cost(wt) ⇠ surprisal(wt) + surprisal(wt�1)

+ surprisal(wt�2)

+ length(wt) + freq(wt)

+ length(wt�1) + freq(wt�1)

+ length(wt�2) + freq(wt�2) . (1)
surprisal(wt) = � log p(wt|w<t) . (2)

Here, wt is t-th word in a text, and w<t =

[w1, · · · , wt�1] is its context. Length and uni-
gram frequency of words are included as base-
line factors,4 and surprisal(wt�1) 2 R�0 and
surprisal(wt�2) 2 R�0 are also added to account
for spillover effects. This model design follows re-
cent studies (Wilcox et al., 2023b; Pimentel et al.,
2023),5. We used statsmodels package (Seabold
and Perktold, 2010).

We trained linear regression models both with
and without surprisal(wt), and we report the dif-
ference in the goodness of fit measured by log-
likelihood (� log-likelihood; �LL). This indi-
cates how strongly surprisal contributes to predict-
ing human sentence processing data, i.e., higher
�LL is better. The key question is which LM layer
computes surprisal with better �LL.

Note that we used the same baseline factors
across all datasets/models for a fair comparison,
except for electrode random effects for Michaelov
et al. (2024b)’s EEG data. As is common in
preprocessing, we exclude data points with zero
SPR/FPGD/MAZE. Human data for each token
in the corpus were averaged across subjects prior

4Word length follows character number, and word fre-
quency is estimated with word_freq (Speer, 2022).

5For N400 data, we added baseline amplitude feature.

to analysis, following recent practices (Pimentel
et al., 2023; Oh and Schuler, 2023b; Kuribayashi
et al., 2024; de Varda et al., 2024).

3.4 Probabilities from internal layers

Let us begin with the simplest method of logit-
lens (nostalgebraist, 2020) to extract the probabil-
ity of a word wt from model internals. Given a d-
dimentaional internal representation hl,t 2 Rd at
the l-th layer and time step t, the probability of a
word wt in its context w<t is obtained as follows:

p(wt|w<t;hl,t) = LogitLens(hl,t)[id(wt)]

= softmax(LayerNorm(hl,t)WU )[id(wt)], (3)

where WU 2 Rd⇥|V| is an unembedding matrix
obtained from LM’s output layer, and |V| 2 R
is model’s vocabulary size. Simply put, the inter-
nal representaion hl,t is mapped into output vo-
cabulary space by applying WU (i.e., skipping
subsequent layers [hl+1,t, · · · ,hlast,t]), and next-
word probability is obtained in that space. The
obtained probability (Eq. 3) is first transformed
to surprisal (Eq. 2), and then used in the regres-
sion model to predict human reading data (Eq. 1).
LayerNorm(·) in Eq. 3 is the layer normalization
at the last layer, and [id(wt)] extracts the probabil-
ity for wt

6 from the probability distribution over
V , obtained through the softmax(·) : R|V| !
[0, 1]|V| function.

Building on the logit-lens, Belrose et al. (2023)
extended the method into tuned-lens to handle

6If a word is split into multiple subwords, accumulated
surprisal is used. See Eq.2 in Kuribayashi et al. (2021).

Logit-lens (win rate) Tuned-lens (win rate)

GPT2 OPT OPT OPT OPT OPT OPT PT PT PT PT PT GPT2 OPT OPT PT PT PT PT
Data XL 1.3B 2.7B 6.7B 13B 30B 66B 1B 1.4B 2.8B 6.9B 12B XL 1.3B 6.7B 1.4B 2.8B 6.9B 12B

DC FPGD (Kennedy et al., 2003) 0.80 0.80 0.82 0.76 0.73 0.76 0.78 0.00 0.32 0.36 0.73 0.73 0.73 0.80 0.67 0.64 0.58 0.55 0.54
NS SPR (Futrell et al., 2021) 0.82 0.80 0.85 0.76 0.73 0.76 0.85 0.47 0.52 0.45 0.21 0.41 0.55 0.76 0.70 0.56 0.39 0.36 0.41
ZuCO FPGD (Hollenstein et al., 2018) 0.80 0.84 0.88 0.79 0.73 0.78 0.86 0.76 0.72 0.70 0.85 0.84 0.80 0.84 0.76 0.72 0.67 0.61 0.65
UCL SPR (Frank et al., 2013) 0.78 0.80 0.79 0.76 0.76 0.78 0.80 0.71 0.52 0.64 0.70 0.70 0.73 0.80 0.61 0.52 0.36 0.42 0.35
UCL FPGD (Frank et al., 2013) 0.94 0.88 0.82 0.79 0.83 0.88 0.83 0.59 0.56 0.58 0.70 0.73 0.90 0.92 0.91 0.96 0.48 0.73 0.73

Table 2: How likely �LL from internal layers outperformed the previous best �LL (achieved within
the same model family, relying on their last layers). The results are focused on billion-scale models and
behavioral data with somewhat drastic flips in LM-scaling effects for �LLs. “PT” denotes “Pythia.”

win rate is typically around 80%, indicating a
significant proportion of internal layers achieved
good �LL scores. These findings suggest that
the cognitive plausibility of LLMs has been un-
derestimated and that our argument (Figure 3) was
not based on specific outlier layers but reflected a
broader trend across many internal layers.

5.2 Layer depth and human measures
We observed systematic tendencies in the relation-
ship between layer depth and human measurement
methods. For instance, FPGD aligns better with
earlier layers, whereas N400 aligns better with
later layers, as summarized in Table 1. To statis-
tically validate this relationship, we trained a lin-
ear regression model to explain �LL scores from
our 15,833 experimental settings s 2 {dataset}⇥
{model}⇥ {layer}, using the following formula:

�LL(s) ⇠ stimuli(s) + model(s) + lens(s)

+layer_depth(s) + measure(s)

+layer_depth(s)⇥measure(s), (5)

where stimuli represents the source stimuli of the
data (“Stimuli” column in Table 1), model en-
codes the model name, layer_depth is the depth
of the layer where the �LL is obtained, measure

encodes the human measurement method (“Mea-
sure” column in Table 1), and lens indicates
whether the logit-lens or tuned-lens was used. The
term layer_depth ⇥ measure captures the inter-
action between effective layer depth and human
measures, which is of interest. Note that measure

is a categorical variable, with FPGD serving as
the dummy category.

The coefficients for layer_depth ⇥ N400 and
layer_depth ⇥ MAZE were significantly larger
than zero (p-value < 0.001), while that for
layer_depth ⇥ SPR does not significantly differ
with layer_depth ⇥ FPGD (see full regression

(a) All tokens. (b) Clause-final tokens.

Figure 4: Relationship between �LL and rela-
tive layer depth (lower is shallower) for each hu-
man measure. Different measures are associated
with different layers; for example, good �LLs for
FPGD are achieved in earlier layers, while those
for MAZE are in the latter layers.

results in Table 5 in the Appendix). This con-
firms that SPR and FPGD align with shallower
layers than those yielding a good fit with N400
and MAZE. We also visualize the relationships be-
tween �LL and relative layer depth for each hu-
man measure in Figure 4a (polynomial fit using
2nd-order term). Here, we use corrected �LLs
that are computed by subtracting variances ex-
plained by other factors than measure identified
in Eq. 5. The lines also indicate the differences
across different human measures, e.g., good �LL
for MAZE is clearly associated with latter layers.

It is worth noting that we also conducted an
exploratory analysis with other human measures
(e.g., P600, second-pass gaze duration) on the
UCL corpus (Table 4 in Appendix). For such an
extended scope, we cannot confirm the implied
relationship between fast–slow human responses
and early–late LM layers, and this appears to hold
primarily for well-established human measures of
SPR, FPGD, N400, and MAZE.

5.3 Are results biased by targeted tokens?
A potential confound in § 5.2 stems from dif-
ferences in targeted tokens for different human
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).

−2.6 −2.5 −2.4 −2.3 −2.2
10

20

30

40

50

60

Linguistic Accuracy

P
sy

ch
ol

og
ic

al
 A

cc
ur

ac
y

a1

a2

a3

a4

s1

s2
s3s4

m1 m2

m3

g2

g3

w2
w3

e1

e2 e3

e4

e5
e6

Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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GPT2-xl

OPT-125m
OPT-1.3b
OPT-6.7b

Pythia-70m
Pythia-160m
Pythia-410m
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Pythia-1b
Pythia-1.4b

Pythia-12b

Last layer
Best layer

Pythia-6.9b

Figure 2: Relationships between layer depth (x-axis) and �LL (y-axis) for each LM in two datasets:
FPGD in DC and SPR in NS. The graphs are separated by model families and data. The best/last layer
is indicated with a red/black edge line. The graph starts at the first layer, not at the embedding layer.

Cost(wt) ⇠ surprisal(wt) + surprisal(wt�1)

+ surprisal(wt�2)

+ length(wt) + freq(wt)

+ length(wt�1) + freq(wt�1)

+ length(wt�2) + freq(wt�2) . (1)
surprisal(wt) = � log p(wt|w<t) . (2)

Here, wt is t-th word in a text, and w<t =

[w1, · · · , wt�1] is its context. Length and uni-
gram frequency of words are included as base-
line factors,4 and surprisal(wt�1) 2 R�0 and
surprisal(wt�2) 2 R�0 are also added to account
for spillover effects. This model design follows re-
cent studies (Wilcox et al., 2023b; Pimentel et al.,
2023),5. We used statsmodels package (Seabold
and Perktold, 2010).

We trained linear regression models both with
and without surprisal(wt), and we report the dif-
ference in the goodness of fit measured by log-
likelihood (� log-likelihood; �LL). This indi-
cates how strongly surprisal contributes to predict-
ing human sentence processing data, i.e., higher
�LL is better. The key question is which LM layer
computes surprisal with better �LL.

Note that we used the same baseline factors
across all datasets/models for a fair comparison,
except for electrode random effects for Michaelov
et al. (2024b)’s EEG data. As is common in
preprocessing, we exclude data points with zero
SPR/FPGD/MAZE. Human data for each token
in the corpus were averaged across subjects prior

4Word length follows character number, and word fre-
quency is estimated with word_freq (Speer, 2022).

5For N400 data, we added baseline amplitude feature.

to analysis, following recent practices (Pimentel
et al., 2023; Oh and Schuler, 2023b; Kuribayashi
et al., 2024; de Varda et al., 2024).

3.4 Probabilities from internal layers

Let us begin with the simplest method of logit-
lens (nostalgebraist, 2020) to extract the probabil-
ity of a word wt from model internals. Given a d-
dimentaional internal representation hl,t 2 Rd at
the l-th layer and time step t, the probability of a
word wt in its context w<t is obtained as follows:

p(wt|w<t;hl,t) = LogitLens(hl,t)[id(wt)]

= softmax(LayerNorm(hl,t)WU )[id(wt)], (3)

where WU 2 Rd⇥|V| is an unembedding matrix
obtained from LM’s output layer, and |V| 2 R
is model’s vocabulary size. Simply put, the inter-
nal representaion hl,t is mapped into output vo-
cabulary space by applying WU (i.e., skipping
subsequent layers [hl+1,t, · · · ,hlast,t]), and next-
word probability is obtained in that space. The
obtained probability (Eq. 3) is first transformed
to surprisal (Eq. 2), and then used in the regres-
sion model to predict human reading data (Eq. 1).
LayerNorm(·) in Eq. 3 is the layer normalization
at the last layer, and [id(wt)] extracts the probabil-
ity for wt

6 from the probability distribution over
V , obtained through the softmax(·) : R|V| !
[0, 1]|V| function.

Building on the logit-lens, Belrose et al. (2023)
extended the method into tuned-lens to handle

6If a word is split into multiple subwords, accumulated
surprisal is used. See Eq.2 in Kuribayashi et al. (2021).

Logit-lens Tuned-lens

Figure 3: Scaling effect between model size (parameter counts in log scale) and �LL. Each marker
corresponds to each LM’s �LL score from its best layer (red edge) or the last layer (black edge). The
regression lines show the scaling effects, and the red line is for best-layer’s �LL while the grey one is
for the last layer’s. The maker type (shape/size/color) follows the legend in Figure 1. Pythia 14M, 31M,
and 70M models are excluded as outliers in the X-axis, but including them does not alter the conclusion.

4.2 Revisiting LM-scaling effects in cognitive
modeling with internal layers

We revisit the question with our extended focus
on model internals: what kind of LMs yield the
best �LL from their internals? As the field is par-
ticularly interested in the relationship with model
scaling (Goodkind and Bicknell, 2018; Oh and
Schuler, 2023b), we examine the relationship be-
tween LM parameter size (x-axis) and �LL (y-
axis) for two scenarios: (1) using the last layer’s
�LL (grey lines), reproducing previous findings,
and (2) considering the best �LL layer identified
in this study (red lines).

Figure 3 illustrates these two relationships. The
grey lines align with prior findings replying on
the last layer (Oh and Schuler, 2023b; Michaelov
et al., 2024a), showing mixed scaling effects,
where larger LMs do not consistently outperform
smaller ones. However, the red lines reveal a pos-
itive scaling trend: larger LMs achieve equal or
better �LL compared to smaller LMs when inter-
nal layers are taken into account. The Pearson cor-
relation coefficients between parameter numbers
and �LL from the best layers was significantly
larger than zero on average, across settings.8 This
suggests that when the analysis extends to internal

8We collected the correlation coefficients between

layers, the �LL ranking flips, revealing that larger
LMs are seemingly more cognitively plausible. In
other words, larger LMs embed cognitively plau-
sible, smaller LMs within their internal. One no-
table exception is the MAZE processing time in
the NS dataset (Boyce and Levy, 2023), where a
strictly negative scaling effect persists, even when
internal layers are considered. PPL–�LL relation-
ships9 are additionally shown in Figure 6 in the
Appendix, which also show that the poor �LL of
larger, more accurate LMs is mitigated.

5 Analyses

5.1 How easily can good layers be found?
To assess how many layers yield a good �LL,
we analyze the amount of internal layers that out-
perform the previously best �LL achieved by the
last layer within the same model family. Ta-
ble 2 presents the win rate of internal layers’ �LL
against the respective previous best score. The
params. and �LL from 34 settings of {dataset} ⇥ {lens},
and one-sample t-test shows that these coeffiencts are, on av-
erage, significantly larger than zero (p-value < 0.05).

9Perplexity (PPL), a general quality measure of LMs,
is a geometric mean of next-word probabilities over data L:Q|L|

t=1 p(wt|w<t)
1/|L|. The PPL–�LL relationship has long

been investigated (Frank and Bod, 2011; Goodkind and Bick-
nell, 2018; Kuribayashi et al., 2021; Oh and Schuler, 2023b).

Logit-lens (win rate) Tuned-lens (win rate)

GPT2 OPT OPT OPT OPT OPT OPT PT PT PT PT PT GPT2 OPT OPT PT PT PT PT
Data XL 1.3B 2.7B 6.7B 13B 30B 66B 1B 1.4B 2.8B 6.9B 12B XL 1.3B 6.7B 1.4B 2.8B 6.9B 12B

DC FPGD (Kennedy et al., 2003) 0.80 0.80 0.82 0.76 0.73 0.76 0.78 0.00 0.32 0.36 0.73 0.73 0.73 0.80 0.67 0.64 0.58 0.55 0.54
NS SPR (Futrell et al., 2021) 0.82 0.80 0.85 0.76 0.73 0.76 0.85 0.47 0.52 0.45 0.21 0.41 0.55 0.76 0.70 0.56 0.39 0.36 0.41
ZuCO FPGD (Hollenstein et al., 2018) 0.80 0.84 0.88 0.79 0.73 0.78 0.86 0.76 0.72 0.70 0.85 0.84 0.80 0.84 0.76 0.72 0.67 0.61 0.65
UCL SPR (Frank et al., 2013) 0.78 0.80 0.79 0.76 0.76 0.78 0.80 0.71 0.52 0.64 0.70 0.70 0.73 0.80 0.61 0.52 0.36 0.42 0.35
UCL FPGD (Frank et al., 2013) 0.94 0.88 0.82 0.79 0.83 0.88 0.83 0.59 0.56 0.58 0.70 0.73 0.90 0.92 0.91 0.96 0.48 0.73 0.73

Table 2: How likely �LL from internal layers outperformed the previous best �LL (achieved within
the same model family, relying on their last layers). The results are focused on billion-scale models and
behavioral data with somewhat drastic flips in LM-scaling effects for �LLs. “PT” denotes “Pythia.”

win rate is typically around 80%, indicating a
significant proportion of internal layers achieved
good �LL scores. These findings suggest that
the cognitive plausibility of LLMs has been un-
derestimated and that our argument (Figure 3) was
not based on specific outlier layers but reflected a
broader trend across many internal layers.

5.2 Layer depth and human measures
We observed systematic tendencies in the relation-
ship between layer depth and human measurement
methods. For instance, FPGD aligns better with
earlier layers, whereas N400 aligns better with
later layers, as summarized in Table 1. To statis-
tically validate this relationship, we trained a lin-
ear regression model to explain �LL scores from
our 15,833 experimental settings s 2 {dataset}⇥
{model}⇥ {layer}, using the following formula:

�LL(s) ⇠ stimuli(s) + model(s) + lens(s)

+layer_depth(s) + measure(s)

+layer_depth(s)⇥measure(s), (5)

where stimuli represents the source stimuli of the
data (“Stimuli” column in Table 1), model en-
codes the model name, layer_depth is the depth
of the layer where the �LL is obtained, measure

encodes the human measurement method (“Mea-
sure” column in Table 1), and lens indicates
whether the logit-lens or tuned-lens was used. The
term layer_depth ⇥ measure captures the inter-
action between effective layer depth and human
measures, which is of interest. Note that measure

is a categorical variable, with FPGD serving as
the dummy category.

The coefficients for layer_depth ⇥ N400 and
layer_depth ⇥ MAZE were significantly larger
than zero (p-value < 0.001), while that for
layer_depth ⇥ SPR does not significantly differ
with layer_depth ⇥ FPGD (see full regression

(a) All tokens. (b) Clause-final tokens.

Figure 4: Relationship between �LL and rela-
tive layer depth (lower is shallower) for each hu-
man measure. Different measures are associated
with different layers; for example, good �LLs for
FPGD are achieved in earlier layers, while those
for MAZE are in the latter layers.

results in Table 5 in the Appendix). This con-
firms that SPR and FPGD align with shallower
layers than those yielding a good fit with N400
and MAZE. We also visualize the relationships be-
tween �LL and relative layer depth for each hu-
man measure in Figure 4a (polynomial fit using
2nd-order term). Here, we use corrected �LLs
that are computed by subtracting variances ex-
plained by other factors than measure identified
in Eq. 5. The lines also indicate the differences
across different human measures, e.g., good �LL
for MAZE is clearly associated with latter layers.

It is worth noting that we also conducted an
exploratory analysis with other human measures
(e.g., P600, second-pass gaze duration) on the
UCL corpus (Table 4 in Appendix). For such an
extended scope, we cannot confirm the implied
relationship between fast–slow human responses
and early–late LM layers, and this appears to hold
primarily for well-established human measures of
SPR, FPGD, N400, and MAZE.

5.3 Are results biased by targeted tokens?
A potential confound in § 5.2 stems from dif-
ferences in targeted tokens for different human
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Results
Results for first-pass durations7 are presented in this article; 
the other two sets of results can be found in the Supplemental 
Material available online. Figure 2 shows each model’s lin-
guistic accuracy plotted against its psychological accuracy. 
Each set of surprisal estimates contributes significantly, all 
χ2s(1, N = 191,380) > 12.8; p < .0004, and in the correct (i.e., 
positive) direction to the regression model’s fit to first-pass 
reading times.

The PSG models were able to reach higher levels of lin-
guistic accuracy than Markov models and ESNs were.8 More-
over, there was a clear relation between the PSG models’ 
linguistic and psychological accuracies: More accurate models 
of the language also predicted the reading times more accu-
rately. The same relation seems to hold, albeit not as strongly, 
for the sequential-structure models. A comparison between 
model types, however, showed that, at similar levels of lin-
guistic accuracy, the ESNs had higher psychological accuracy 
than did the PSG models. The psychological accuracy of  
Markov models is either above or equal to that of PSG models 
with similar linguistic accuracy.

ESNs formed more accurate psychological models than 
PSGs did; however, this does not mean that hierarchical struc-
ture lacks the ability to account for any unique variance in 
reading time. To investigate whether hierarchical structure had 
additional explanatory value, we compared the ESN and PSG 
that showed highest psychological accuracy (i.e., the 400-unit 

ESN and Level 3 PSG-s) by taking the regression model that 
includes either the PSG model’s or the ESN’s surprisal esti-
mates and adding the surprisal estimates generated by the 
other language model. The resulting decreases in deviance 
revealed that the PSG model’s estimates did not significantly 
contribute to the estimates made by the ESN, χ2(1, N = 
191,380) = 0.95; p > .3, whereas the ESN-based surprisals do 
have predictive value over and above the PSG model’s, χ2(1,
N = 191,380) = 7.56; p < .006. This shows that the PSG does 
not explain variance in reading-time data over and above what 
is already accounted for by the ESN. Consistent results were 
obtained using the two alternative reading-time measures (see 
the Supplemental Material for details).

Discussion
The best-performing PSG models were more linguistically 
accurate than Markov models and ESNs were. Nevertheless, 
having access to hierarchical phrase structure did not always 
make PSG models psychologically more accurate than models 
that use only sequential structure. On the contrary, ESNs, which 
do not adopt hierarchical structure, estimated surprisal values 
that fit the reading times better than PSG models did. This find-
ing suggests that human sentence processing relies more on 
sequential than on hierarchical structure, at least insofar as is 
relevant for generating expectations about upcoming material. 
It should be kept in mind, however, that language models (and 
in particular hierarchical ones) come in many more varieties 
than the selection we have studied here. It remains to be investi-
gated whether the current results generalize to a wider set of 
sequential and hierarchical language models.

Nonadjacent dependencies are ubiquitous in language and 
many appear in the Dundee corpus. The sentence displayed in 
Figure 1 is an example: The plural verb “are” is dependent on 
the plural noun “wonders” and not on the adjacent singular 
noun “broadband.” PSG models are particularly good at deal-
ing with such nonadjacent, long-term dependencies within 
sentences (Chomsky, 1957; Manning & Schütze, 1999) but do 
not directly store word or POS sequences. In contrast, Markov 
models and ESNs do retain information about frequencies of 
sequences, but have difficulties with long-term dependencies. 
Possibly, people behave more like ESNs than like PSGs in this 
respect. Indeed, experimental evidence has provided at least 
five indications of this possibility: Frequent multiword 
sequences are stored as wholes by both children (Bannard & 
Matthews, 2008) and adults (Arnon & Snider, 2010), more fre-
quent word sequences are read faster than less frequent ones 
(Tremblay, Derwing, Libben, & Westbury, 2011), locally 
coherent structure can interfere with long-term dependencies 
(Tabor, Galantucci, & Richardson, 2004), sensitivity to 
sequential structure is correlated with sensitivity to word pre-
dictability (Conway, Bauernschmidt, Huang, & Pisoni, 2010), 
and subject-verb number-agreement errors in sentence pro-
duction depend on the sentence’s sequential rather than hierar-
chical structure (Gillespie & Pearlmutter, 2011).
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Fig. 2. Results for first-pass reading times: psychological accuracy plotted 
against linguistic accuracy. Psychological accuracy was defined as the decrease 
in deviance that resulted from including one set of surprisal estimates in the 
regression, and linguistic accuracy was defined as the negative of the average 
surprisal. Results are plotted for phrase-structure-grammar (PSG) models, 
Markov models, and echo state networks. PSG models were constructed 
using only ancestor information (an, where n indicates the number of levels 
up in the parse tree from which conditioning information was obtained) or 
taking also the ancestors’ left siblings into account (sn). Markov models of 
order n were created with additive smoothing (mn), Simple Good-Turing 
smoothing (gn), or Witten-Bell smoothing (wn). Echo state networks (en) had 
100n hidden units.
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Figure1:Improvementsinloglikelihoodforlin-
earmodels,chartedagainstdecreasesinperplex-
ity.Distancefromthecentraltrendlineisindica-
tiveoflargerdeparturesinloglikelihoodasafunc-
tionofperplexity.Thebluelinerepresentsalinear
bestfit,withacoefficientof�1.66andR2=0.94

qualitylanguagemodelscannotbetrustedtoac-
curatelyestimatethesizeoftheeffectofsurprisal
onreadingtimes.

3.2Resultsanddiscussion

3.2.1LogLikelihood

AsshowninFigure1andTable2,thereisamono-
toniceffectoflanguagemodelqualityonpredic-
tivepower.Betterlanguagemodels(lowerper-
plexity)yieldsurprisalvaluesthatbetterpredict
readingtimes,asseenbyincreased�LogLik.In-
deed,Figure1showsastrikinglystrongrelation-
shipbetweenalanguagemodel’slinguisticqual-
ity(measuredbyperplexity)andtheabilityofsur-
prisalvaluesderivedfromthatmodeltopredict
readingtimes(measuredby�LogLik).Thesetwo
valueshaveanR2of0.94.

However,thereisonerelativelycleardepar-
turefromthistightlinearrelationship.Namely,
thelargedecreaseintheperplexitygoingfromthe
5-grammodeltotheLSTMisnotreflectedina
largejumpin�LogLik.Putanotherway,although
thereisaclearsystematicrelationshipbetween
languagemodellinguisticqualityand�LogLik,
thereisalsosomeevidenceforeffectsoflanguage
modeltype,suchthattheLSTMislessusefulfor
predictingreadingtimesthanwouldbeexpected
givenitsperplexity.

Figure2:Changesinthecurrentword’scoefficient
forlinearmodels,chartedagainstincreasesinper-
plexity.Distancesfromthecentraltrendlineare
indicativeoflargerdeparturesofthecurrentword
coefficientfromtheexpectedtrend.Regardlessof
perplexity,thecoefficientisstable.Theblueline
representsalinearbestfit,withacoefficientof
�2.79andR2=0.007.

3.2.2CurrentWord
Theeffectsoftwowords’surprisalwasincorpo-
ratedintotheGAMs:thesurprisalofthecurrent
wordandthesurprisalofthepreviousword.De-
spitethedifferentmodels’verydifferentperplex-
ities,thesizeoftheeffectsofsurprisalwerees-
timatedverystablyacrosslanguagemodels.As
seeninFigure2,allmodelshadsurprisalcoef-
ficientsaround3(althoughtheLSTMmodelis
againsomewhatofalowoutlier).Thereisnoclear
relationshipbetweenthecoefficientsforthesur-
prisalofthecurrentwordandlanguagemodel
quality,withboththebestmodel(optimalinter-
polation)andtheworstmodel(bigrams)havinga
valueof3.04.

3.2.3PreviousWord
Similartotheresultsaboveforthecurrentword,
thepreviousword’ssurprisalalsohadaninconsis-
tenteffectacrossmodels.Inotherwords,thecoef-
ficientforthepreviousword’ssurprisal(seeTable
2)borenoclearrelationshipwithrelativeimprove-
mentsinlanguagemodelperplexity.

4Non-lineareffectsofsurprisal

Inadditiontotheprevioussetofanalysesanalyz-
ingthepredictivepoweroflineareffectsofsur-
prisalonreadingtimes,weconductedanotherset
ofanalysesallowingfornon-lineareffectsofsur-
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Figure 4: (a) Relative contribution per layer of neighbours at different positions. (b) Total contribu-
tion per neighbour for the first, middle and last layers.

5.3 CONTRIBUTION OF CONTEXT TO HIDDEN TOKENS

In this section we study how context is aggregated into hidden embeddings. Figure 4a shows the
relative contribution of neighbouring tokens at each layer for the relative positions: first, second,
third, fourth and fifth together, sixth to 10th together, and the rest. The closest neighbours (1st)
contribute significantly more in the first layers than in later layers. Conversely, the most distant
neighbours (11th onwards) contribute the most in deeper layers (cf. Appendix C.2). Despite the
progressive increase in long-range dependencies, the context in the hidden embeddings remains
mostly local. Figure 4b represents the normalized total contribution aggregated over all tokens
from each of their neighbours at the first, middle and last layer. This figure shows that the closest
neighbours consistently contribute the most to the contextual word embedding regardless of depth.
On the other hand, we indeed observe an increase of distant contributions at later layers.

The results of this section suggest that BERT learns local operators from data in an unsupervised
manner, in the absence of any such prior in the architecture. This behavior is not obvious, since
attention is a highly non-local operator, and in turn indicates the importance of local dependencies
in natural language. While contribution is local on average, we find that there are exceptions, such
as the [CLS] token (cf. Appendix C.3). Furthermore, using our Hidden Token Attribution method,
one can track how context is aggregated for specific tokens (cf. Appendix C.4).

6 RELATED WORK

Input-output mappings play a key role in NLP. For example, in machine translation, they were in-
troduced in the form of explicit alignments between source and target words (Brown et al., 1993).
Neural translation architectures re-introduced this concept in the form of attention (Bahdanau et al.,
2015). The development of multi-head self-attention (Vaswani et al., 2017) has led to many impres-
sive results in NLP. As a consequence, much work has been devoted to better understand what these
models learn, with a particular focus on using attention to explain model decisions.

Jain & Wallace (2019) show that attention distributions of LSTM based encoder-decoder models are
not unique, and that adversarial attention distributions that do not change the model’s decision can
be constructed. They further show that attention distributions only correlate weakly to moderately
with dot-product based gradient attribution. Wiegreffe & Pinter (2019) also find that adversarial
attention distributions can be easily found, but that these alternative distributions perform worse on
a simple diagnostic task. Serrano & Smith (2019) find that zero-ing out attention weights based on
gradient attribution changes the output of a multi-class prediction task more quickly than zero-ing
out based on attention weights, thus showing that attention is not the best predictor of learned fea-
ture importance. Pruthi et al. (2019) demonstrate that self-attention models can be manipulated to
produce different attention masks with very little cost in accuracy. These papers differ in their ap-
proaches, but they all provide empirical evidence showing that attention distributions are not unique
with respect to downstream parts of the model (e.g., output) and hence should be interpreted with
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Abstract
Language models (LMs) have been used in cog-
nitive modeling as well as engineering studies—
they compute information-theoretic complexity
metrics that simulate humans’ cognitive load
during reading. This study highlights a lim-
itation of modern neural LMs as the model
of choice for this purpose: there is a discrep-
ancy between their context access capacities
and that of humans. Our results showed that
constraining the LMs’ context access improved
their simulation of human reading behavior. We
also showed that LM-human gaps in context
access were associated with specific syntactic
constructions; incorporating syntactic biases
into LMs’ context access might enhance their
cognitive plausibility.1

1 Introduction
In computational psycholinguistics, human read-
ing behavior has been compared with various
complexity metrics to understand human sentence
processing (Crocker, 2007). Having historically
started from simple measures such as word length,
surprisal (� log p(word|context)) computed by
language models (LMs) has become a common
choice (Levy, 2008; Smith and Levy, 2013). On
top of this, the next question arises—which model
implementation and/or algorithm can compute sur-
prisal that successfully simulates human behavior?
In this line of research, modern neural LMs such
as Transformer (Vaswani et al., 2017) have been
analyzed with respect to their cognitive plausibil-
ity (Wilcox et al., 2020; Merkx and Frank, 2021;
Kuribayashi et al., 2021).

Despite their use in cognitive modeling, such
modern LM architectures (e.g., self-attention) are,
arguably, an unnatural choice when it comes to
human cognitive constraints; modern LM architec-
tures assume powerful, parallel access to a vast

1Our codes are available at � https://github.
com/kuribayashi4/context_limitation_cognitive_
modeling
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Figure 1: Relationship between psychometric predictive
power (PPP) of language models (LMs) and their con-
text access constraints. LMs with less context access
better simulate human reading behavior (higher PPP).
The marker color/shape indicates LM settings; colored
areas present one standard deviation of PPP.

number of context tokens, while humans might
have limited and selective context access (Hawkins,
1994; Gibson, 1998, 2000; Lewis et al., 2006).
Searching for a computational model that better
simulates human sentence processing than previ-
ously examined ones, we hypothesized that intro-
ducing such context limitations can improve LMs’
estimation of human cognitive load.

Specifically, as a starting point, we applied an
n-gram-ification trick to neural LMs mimicking
loading for long context access (locality effects)
and compared their surprisal with human reading
behavior data. Despite the simple context limita-
tion design, our experiments with 280 settings (40
LM settings⇥7 noise patterns) showed that the ad-
vantage of a shorter context was consistent among
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Fundamental linguistic problems

• What are humans computing during 
real-time language processing?

• Why do natural languages 
have typological universals, 
e.g., subject≺object?

now1 sec. ago10 years agoMillions of years ago

https://wals.info/feature/81A#2 
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figure 6.1. The transmission of language over time.

the transformations that map between them should be sufficient to de-
termine the dynamical properties of linguistic transmission.

A computational simulation of linguistic transmission works within
the framework shown in figure 6.2, an elaboration of the model in figure
6.1. The simulation implements these processes:

1. An individual in the simulation is given a set of meanings that must
be expressed. These meanings can be thought of as being provided
by the external ‘world’, but in the simulation will simply be chosen
randomly from some predefined set.

2. The individual then attempts to express each meaning either using
their own internalized knowledge of language or by some random
process of invention.

3. A new learner takes this set of utterances and uses it as input to
learning.

4. Finally, the learner becomes a new speaker, the old speaker is dis-
carded and a new individual is added to become a new learner and
the cycle repeats.

The utterances that the individuals produce and learn from in these
simulations are pairs of strings of letters (which can be thought of as
basic unanalysable phonemic segments) and meaning representations.
In these simulations the world is made up of a set of predefined atomic
concepts. These might include:

john tiger
eats fears

knows

[Kirby, 2002]

Language easy to process 
would have survived

• How can humans acquire language?

https://wals.info/feature/81A


From cognitive modeling to language universals
Kuribayashi+24 (ACL)
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From cognitive modeling to language universals
Kuribayashi+24 (ACL)
• A problem to predict the plausibility of language design, based on 

their learnability and processing difficulty for LMs.

…
[subject precedes object,
subject precedes verb,
Adjective precedes noun…]

[subject follows object,
subject precedes verb,
Adjective precedes noun…]

[subject follows object,
subject follows verb,
Adjective follows noun…]
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From cognitive modeling to language universals
Kuribayashi+24 (ACL)
• A problem to predict the plausibility of language design, based on 

their learnability and processing difficulty for LMs.

• Train LMs in each language and obtain learnability distribution across language configurations

• Which language is easier to learn for  particular LMs?
• Human-like LMs: memory limitation, syntax-aware, cognitively-plausible left-corner traversals

…
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From cognitive modeling to language universals
Kuribayashi+24 (ACL)
• Learning/processing difficulties of LMs are better correlated with 

typological distributions when using more cognitively-motivated LMs
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the transformations that map between them should be sufficient to de-
termine the dynamical properties of linguistic transmission.

A computational simulation of linguistic transmission works within
the framework shown in figure 6.2, an elaboration of the model in figure
6.1. The simulation implements these processes:

1. An individual in the simulation is given a set of meanings that must
be expressed. These meanings can be thought of as being provided
by the external ‘world’, but in the simulation will simply be chosen
randomly from some predefined set.

2. The individual then attempts to express each meaning either using
their own internalized knowledge of language or by some random
process of invention.

3. A new learner takes this set of utterances and uses it as input to
learning.

4. Finally, the learner becomes a new speaker, the old speaker is dis-
carded and a new individual is added to become a new learner and
the cycle repeats.

The utterances that the individuals produce and learn from in these
simulations are pairs of strings of letters (which can be thought of as
basic unanalysable phonemic segments) and meaning representations.
In these simulations the world is made up of a set of predefined atomic
concepts. These might include:

john tiger
eats fears

knows

Future: Emergent corpus

• LLMs are good at learning language, if there is a corpus
• Language transmission in one generation

• Then, where is corpus from?
• Humans have achieved LLM-like behaviors 

from a situation w/o corpus, in the long history on Earth
• Connection to emergent language/communication/symbols

• must be handled via computational simulation (computational linguistics!)

now1 sec. ago10 years agoMillions of years ago

LLM training may give us a hint

[Kirby, 2002]
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Future: Connections to Robotics

• Text-only NLP alone can not explore language emergence under text-less 
environments

• Agents should play real, physical games to explore the emergence of language

• If we can train LMs (robots) under the same scenarios as humans, and if they 
acquire language in the same way as humans, what does this imply?

Build a model

Test the fit/prediction
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Future: How should we measure human-likeness of LLMs?

• Humanities studies as checklists

• What is minimum criteria to explain empirical linguistic observations?

Build a model

Test the fit/prediction

Describe/hints

Humanities studies
Human language model

now1 sec. ago10 years agoMillions of years ago

• Can LMs simulate human 
real-time language processing?

• Can LMs mimic human-like 
language acquisition patterns?

• Can neural agents 
re-invent human language?

• Do LLMs have 
linguistic 
knowledge?
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Future: Maintaining the community

• ~90% of (young) NLP researchers may be thinking about LLMs and chatbot
• It may be rational, considering the current trend/economy, instead of exploring niche topics
• How can community think more freely about diverse things or how can I encourage such 

activities? (I also sometimes feel a sense of isolation in the community)
• The microwave oven was invented thanks to a person who happened to

notice a melted chocolate in radar research.

• How to appeal the excitement of exploring scientific (humanities) questions?
• Isn’t it only natural that we want to know about humans because we are humans?

• AI is not only for the science of artificial intelligence but also for any science using 
artificial intelligence 
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