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(D motivation (2) my main research directions (3 future directions
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Scientific modeling

* Why do planets move as observed?

* How did organic compounds emerge on the Earth?
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Scientific modeling

) ?
Why do planets move as observed” 8uild a model

Test the fit/prediction

Build a model

Test the fit/prediction "\

Build a model

Test the fit/prediction
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: I S - T https://www.rcast.u-tokyo.ac.jp/ja/research/nishinari lab.html 6
(figures are from Wikipedia or https://www.irasutoya.com/, unless otherwise stated)
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Scientific modeling

Why do planets move as observed* Build a model L
4 ‘ Test the fit/prediction |
« How did organic compounds emerge on the Earth? {—,
Build a model | Kﬁ)/
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Test the fit/prediction
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Scientific modeling

 Why do planets move as observed? . .. _ ..,

If a model exactly simulates a phenomenon

o of interest, the model serves as a good
hypothesis/explanation for that
phenomenon.

* How (aka. scientific modeling)

FALEIR Al TS ) ‘ https://www.rcast.u-tokyo.ac.jp/ja/research/nishinari lab.html 8
(figures are from Wikipedia or https://www.irasutoya.com/, unless otherwise stated)
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Fundamental linguistic questions L)

« What are humans computing during real-time language processing?
« What kind of equation are you now computing in front of this slide?

« What is minimum requirements to be able to acquire language?
« Why do cats never start talking even if one keeps talking to them everyday?

« Why do natural languages share certain universals, e.g., subject precedes objects?
« Why do languages shape as is? How did it emerge?
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« What are humans computing during real-time language processing?
« What kind of equation are you now computing in front of this slide?

« What is minimum requirements to be able to acquire language?
« Why do cats never start talking even if one keeps talking to them everyday?

« Why do natural languages share certain universals, e.g., subject precedes objects?
« Why do languages shape as is? How did it emerge?
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Why is artificial intelligence (Al) relevant to humanities? Fag wezun

« Science requires objectivity

« Paradox: if humans start to introspect about ourselves to study human intelligence,
this will lack objectivity

* Thus, we have to build a model (artificial intelligence), apart from humans and test it

* One of the original goals of the Al field --- understanding it by building it

* ...the field (artificial intelligence) from three points of view. computational psychology, computational
philosophy, and machine intelligence... The goal of computational psychology is to understand human
intelligent behavior by creating computer programs that behave in the same way that people do ...
The program should do quickly what people do quickly, should do more slowly what people have

difficulty doing, and should even tend to make mistakes where people tend to make mistake...
[Encyclopedia of Artificial Intelligence, Shapiro 1991]
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Why is artificial intelligence (Al) relevant to humanities?

« Science requires objectivity

%:'c':}é MBZUA]

« Paradox: if humans start to introspect about ourselves to study human intelligence,

this will lack objectivity

* Thus, we have to build a model (artificial intelligence), apart from humans and test it

» Here, the goal is to build an exactly human-like computational model that
simulates phenomena of humans, following the scientific modeling approach

?? LLM studies
* o Humanity’s
Last Exam
? ? Huma [Phan+,25]
<< >
Cannot do Cando

Human language

Our research: psycholinguistics

Build a model RS
le ol
Test the fit/prediction == &=

Humanities studies model
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Why is artificial intelligence (Al) relevant to humanities? T uszus

« Science requires objectivity

« Paradox: if humans start to introspect about ourselves to study human intelligence,
this will lack objectivity

* Thus, we have to build a model (artificial intelligence), apart from humans and test it

Going back to 7 BCE - 16 CE...
* “Humans to explain humans” is super unethical (especially in causality experiments)

Pharaoh Psamtik
(664 — 610 BCE)

Frederick Il
(1194-1250)

= James |V
| (1473-1513)

If one locks an infant in a room, what language will they start speaking?

(Thanks for Alex: https://gdr-lift.loria.fr/wp-content/uploads/2023/06/A.-Warstadt-ILFC-seminar-talk.p f%
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LLMs... are you the model of humans...?

* We humans somehow found one way TL:DR

to build a model that behaves like humans

STACK
MORE
LAYERS

(AND DATA!)

&

MBZ
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LLMs... are you the model of humans...?

* We humans somehow found one way
to build a model that behaves like humans

« Some linguists criticize that this is not 29777 TR —
the model that linguistics has pursued

MORE
LAYERS
(AND DATA!)
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* We humans somehow found one way
to build a model that behaves like humans

« Some linguists criticize that this is not 29777 TR —
the model that linguistics has pursued

MORE
LAYERS
(AND DATA!)

« But we do not know other things that can learn

human language as far as we Know (in fact, it's seemingly working the best)
« That's why NVIDIA stock is sparking

17



LLMs... are you the model of humans...? gk

* We humans somehow found one way
to build a model that behaves like humans

« Some linguists criticize that this is not 29777  THR ——
the model that linguistics has pursued

« But we do not know other things that can learn
human language as far as we Know (in fact, it's seemingly working the best)
« That's why NVIDIA stock is sparking

If a model exactly simulates a phenomenon of interest, the model
serves as a good hypothesis/explanation for the phenomena.

(aka. scientific modeling)

18
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02
| £3 to B
If you were to journey to the " If you North
North of England, - ._g .% _,E\_ Unsupervised
humans S5 were journey of prediction*
=N~ =\
t h e r;;ar::s::ii: model to
Tokens: w = {Wl Wn} Cognitive load: y= {yl yn} ]::(I:tzoc;tsjtatr)]zseline
. determine the
Not tunméany part TUU) coz-fﬁcient:, though
If you were to journey to the 5 —
North of England, - W S I N e
N
LM

Surprisal: ¥ = {—log; p(W1[W<1) ... —logz p(Wp|W<pn)}

* The more unpredictable a word is, the more humans exhibit cognitive loads
* The relationship should be logarithmic [Levy,08][Smith&Levy,13][Shain+,22]

 Surprisal: Cost(w;) x —log, p(W¢|Wei—q1) 19



Are we approaching to the model of humans? Faguez

--- scaling law in cognitive modeling

LM-human
correlations

[Goodkind&Bicknell,

[Frank&Bob, 2011]

»
»

Scaling up neural LMs

(D motivation (2) my main research directions (3 future directions

20 min. 20 min. 5 min.
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Are we approaching to the model of humans?
--- scaling law Iin cognitive modeling

LM-human

correlations

First pointed
out this twist

- o —me1p-2 -02r
Ny Indeed
mg
;

o
;;;;;;

[Goodkiﬁ&&BicknelI,
2018]

Kuribayashi+21,
ACL

[Fra nk&Bob, 2011] Kuribayashi+22,

EMNLP

%
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decreasing!! Why? 1

Kuribayashi+24,
NAACL

[Oh&

Yeah, why1 is

yyyyyyyy

»

Scaling up neural LMs

MBZUA
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Are we approaching to the model of humans?
--- scaling law Iin cognitive modeling

.ﬁs’\é MBZU A

From a bit
different view, we
are approaching!

LM'human ‘v Kuribayashi+25,
COrrelatiOnS /,,' under review
First pointed -7 S
out this twist _ -~~~ =
S RN _ -~ indeed : iy
[Goodkind&Bicknell, decreasing!l — \\hy2 1 [Oh&Schuler, 2022]

2018] Kuribayashi+21,

ACL

[Fra nk&Bob, 2011]
EMNLP

Kuribayashi+22,

Yeah, why1 is

Kuribayashi+24,
NAACL

»

Scaling up neural LMs
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to human data

Ku I"i bayaS h i+2 1 (AC L) Fit of LM surprisaIA = ‘:"“‘ MBZ

First pointed
out this twist

Kuribayashi+21,
ACL

Lower Perplexity is Not Always Human-Like

Tatsuki Kuribayashi', Yohei Oseki**, Takumi Ito!?, Scaling up neurAEs
Ryo Yoshida®, Masayuki Asahara®, Kentaro Inui'*
1Tohoku University 2Langsmith Inc. *University of Tokyo “RIKEN °NINJAL
{kuribayashi, takumi.ito.c4, inui}@tohoku.ac.jp ,
{oseki, yoshiryo0617}@g.ecc.u-tokyo.ac.jp ,masayu—-alninjal.ac.]jp

* First systematic, cross-linguistic evaluation of psychometric predictive power (PPP)
of surprisal from neural LMs Pundes Corpus (Englie)
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Kuribayashi+21 (ACL)

* Previously reported monotonic relationship between LM scaling and PPP

was fragile E J
Model
) y O Trans-Ig
2 0.008 0.0200 ! A Trans-sm
A 35 00175 : CJLSTM
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Better PPL
 Just changing the language (En->Ja) breaks it, empirically
« Reading times and surprisals in the Japanese language (Subject-Object-Verb; SOV word

order) have a large intra-sentential variance (i.e., low uniform information density),

and LM-surprisal could not capture this variation well
SO‘H VSQ | OVS

=
T

entropy/
information

=N
- =
w w
T
I

Normalized

o

12 3 1 2 3 12 3 1 2 3 1 2 3 1 2 3 :
Word Word Word Word Word Word [Maurits+, 2010]
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Kuribayashi+21 (ACL)

* With larger models, the negative
scaling effect appeared even in
the English language.

 We could not observe it in our
ACL 2021 work since we used
in-house smaller LMs

z = 0

L1 N L 1 N -
123123|123123

Word

Natural Stories SPR
650 - d25m
#50m
_pl25m emall
600 A gnedium
darge
5501 g 3000 i
- @.300m
=500+ T
700
e2708ﬁm
450 A $700m
. 423000m e GPT-2
400 - %goq oh GPT-Neo
23.2 23i4 23IG 2318 240 21;12 2-’54 2“16 21;8
Better PPL  Perplexity |

[Oh&Schuler, 2022]

L 1 N mmm .
1 2 3 1 2 3
Word Word

[Maurits+, 2010] 25
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to human data

Kuribayashi+22 (EMNLP) Feof i surprisl ] Fag ez

Context Limitations Make Neural Language Models More Human-Like

Tatsuki Kuribayashi'?  Yohei Oseki®* Ana Brassard'* Kentaro Inuil*

ITohoku University 2Langsmith Inc. *University of Tokyo “RIKEN
{kuribayashi, inui}@tohoku.ac. jp
oseki@g.ecc.u-tokyo.ac.jp ana.brassard@riken. jp

* Why did LMs’ prediction deviate from humans?

e LMSs (Transformers w/ self-attention) may be too good
to consider wide contexts, compared to

human real-time language processing

Kuribayashi+22,
EMNLP

»
»

Scaling up neural LMs

Transformer RNN

i DD DD ® D O @

Hidden
representations

Input

w

Figure 1: Comparison of sequential information flow
through the Transformer and RNN, trained on next-

word prediction. [Merkx&Frank, 21]
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Kuribayashi+22 (EMNLP) *
 Limiting LMs memory capacity aligns with humans
 simple erasure of distant contexts surprisingly works well
ReadingTime(w;) ox— — lpg, p(w|wo, Wy, ... Wi_o, Wi_q)
Japanese English
. . : : v ————— V LSTM-xs-Wiki 0.009 : : : i LSTM-xs-Wiki
o 0.012 25 . - % - GPT2-xs-Wiki 0.008 | : -7 GPT2xs-Wiki
a | L . - A -GPT2-md-Wiki ' ' ' & A GPT2-md-Wiki
T o EEEN B BEEE £ 0.007 > GPT2-sm
8 |Qoo0w0 5 5 P o —4 GPT2-md
o ey 0. 0.006 = gt , =%" . | —e—GPT2g
aa e - = : z | . —4—GPT2x
0.008 | A== %77 x 0.005 | ; | i i 5
0.004
input length :
> input length

Sever memory limit.
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to human data

Kuribayashi+24 (NAACL) it of LW surprsl

Why? 2

Psychometric Predictive Power of Large Language Models

Kuribayashi+24,
NAACL

»
»

Tatsuki Kuribayashi' Yohei Oseki? Timothy Baldwin'* Scaling up neural LMs
IMBZUAI 2The University of Tokyo 3The University of Melbourne
{tatsuki.kuribayashi,timothy.baldwin}@mbzuai.ac.ae
oseki@g.ecc.u-tokyo.ac. jp

* Instruction-tuning and/or meta-linguistic prompting (“Let’s predict language
processing cost!”) did not improve PPP

« Vanilla surprisal from base LMs (w/o tuning) predicts human data the best
« Human real-time processing seem to be simply tuned to statistics of next-word probability

28
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Kuribayashi+25,

Ku ri bayas h i+25 (u N de r reVieW) Fit of LM surprisal

to human data

Large Language Models Are Human-Like Internally

Tatsuki Kuribayashi' Yohei Oseki? Souhaib Ben Taieb!
Kentaro Inui’*°> Timothy Baldwin!° scaling up neAtiE:
IMBZUALI The University of Tokyo 3University of Mons
“Tohoku University °RIKEN °®The University of Melbourne
{tatsuki.kuribayashi, souhaib.bentaieb,
kentaro.inui,timothy.baldwin}@mbzuai.ac.ae
osekilg.ecc.u-tokyo.ac.jp

First ook EEG signals/eye regressions

a word Gaze is fixed N400 P600 reanalysis

] | ] | )

0 ~200ms ~400ms ~600ms time

* Gaze duration is very fast (~200ms/word) and may reflect early-stage
processing of language.
* Where should such fast processing be realized in LLMs?

29



Kuribayashi+25 (under review)

Human reactions

EEG signals

First look
a word

reanalysis

P600

N400

Gaze is fixed

B

time

~400ms ~600ms

~200ms

T,

~J
-~J

I

LMs

Layer n

Layer n-1

Layer n-2

Layer 4
Layer 3
Layer 2
Layer 1

Layer O

LM head

' Existing study

POS
-_

Fit of LM surprisal
to human data

A

P
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s ) MBZ
Kuribayashi+25,
under review’ o
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»

Ian Tenney'
!Google Research

K(A) = 1.60 K(s) = 0.19
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[
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o i =N oy

]

Dipanjan Das!
2Brown University
{iftenney,dipanjand, epavlick}@google.com

Coref. SR

SPR

Relations

»

Scaling up neural LMs

BERT Rediscovers the Classical NLP Pipeline

Ellie Pavlick'?

il il e e o
K(A) = 0.60 K(s) =0.50
B L. | ol Mol | |

K(A) = 0.33 K(s) =0.01
gt [ [ [ [ [ ]
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rn:----------------------
0 2
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Kuribayashi+25 (under review)

Human reactions

EEG signals

First look
a word

reanalysis

P600

N400

Gaze is fixed

B

time

~400ms ~600ms

~200ms

T,

~J
-~J

I

LMs

Layer n
Layer n-1

Layer n-2

Layer 4
Layer 3
Layer 2
Layer 1

Layer O

Fit of LM surprisal
to human data

LM head

' Existing study
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Kuribayashi+25,
under review’ o
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Scaling up neural LMs

' Applying an LM-head to internal layers directly

Surprisal —logp(W¢|wy; hyy)

output  model
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Kuribayashi+25 (under review)

* (Fast) first pass gaze durations are better
predicted in earlier layers

& earlier
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Fit of LM surprisal
to human data
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Scaling up neural LMs
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Kuribayashi+25 (under review)

* (Fast) first pass gaze durations are better
predicted in earlier layers

« Slower measures (N400, MAZE) tend to be
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Corrected ALL

better >
_au

& earlier
DC FPGD

DC FPGD

DC FPGD

0.018 0.018
0016 0.016
N -
0.014 —jooa
012 <,

[ 10 20 30 4o 50

Layer depth
NS SPR

0 5 10 15 20 25 3
Layer depth
NS SPR

20 25 30 35

" Layer depth

NS SPR

1 W
014 6\\
0012{ & i
010 @ N

P
; g hezs

Layer depth

Layer depth

o 5 10 15 20 25 30
Layer depth

® GPT2-small = OPT-125m

® GPT2-large = OPT-1.3b

@ GPT2-xl B OPT-6.7b
Pythia-70m Pythia-2.8b
Pythia-160m Prihia 6.9
Pythia-410m ythia-6.
Pythia-1b Pythia-12b
Pythia-1.4b

O Best layer

O Last layer

better predicted in later layers

{ — SPR
| — FPGD

—— N400
— MAZE

0?0 012 . 0t4 0?6 OTB
Relative layer depth
& earlier

T
1.0

Human reactions

Fit of LM surprisal
to human data

)
(%]
'GAE
=15
@©
C
[50]
[J)
—
(%]
sl &
OT O
o O
©w 2
O
C
.20
(%]
O
Ll
w (%]
sl S
ol S
ST
=4
S
< (%]
& £
w4 8
(0] o~
N
O
(U]
4
8o
= oT°
£ 3
L @©

A

??

i

A :33::; MBZUA

T Kuribayashi+25,
= - .
/5 under rewiw’_.—v

»

»

Scaling up neural LMs

LMs

Layer n
Layer n-1

Layer n-2

Layer 4
Layer 3
Layer 2
Layer 1

Layer O

33



Kuribayashi+25 (under review)

* (Fast) first pass gaze durations are better

predicted in earlier layers

& earlier
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Early layers in LLMs are human-like
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RE: Kuribayashi+22 (EMNLP) i

* Moderately-contextualized, human-like
surprisal from LLMs

R "':;-4*} MBZ

Kuribayashi+25,

Kuribayashi+22,
EMNLP

under rewsw’ o

»

Layer n '
Tatsuki Kuribayashi'’>  Yohei Oseki®** Ana Brassard'* Kentaro Inui'*
'Tohoku University 2Langsmith Inc. 3University of Tokyo *RIKEN
Layer n-1 {kuribayashi, inui}@tohoku.ac.jp
oseki@g.ecc.u-tokyo.ac.jp ana.brassard@riken.jp 0008
Layer n-2 ' oo
Layer 2 ' .
Human-like | L
1 _ |
I =12
=
Layer 1 ' £ Iy —¢
= =1 Earlier layers are less-
=) 0.5 L
s 0. .
Layer 0 ' S contextualized
<
S

-60 40 -20 0 20 40 60

Neighbour g nner+, 19]

Context Limitations Make Neural Language Models More Human-Like

»

Scaling up neural LMs

English

input length

LSTM-xs-Wiki
¥ - GPT2-xs-Wiki

- 4 - GPT2-md-Wiki
¥ > GPT2ssm
A Tt ePt2md

~+—GPT21g
~4—GPT2xI
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Fundamental linguistic problems

Language easy to process

* Why do natural languages would have survived
have typological universals,

e.g., subject<object?

 What are humans computing during
real-time language processing?

! : ' >

° °°® o o a § I
Millions of years ago  “gre™, i i 10 yearsago (%7 E:) g lsec.ago now
https://wals.info/feature/81A#2 -
* How can humans acquire language?

I-Language I-Language

K4 v
o Acquisition T

Prod& / Prodt@\
E-Language E-Language

|
Time [Kirby, 2002] 36


https://wals.info/feature/81A

iti : . o
From cognitive modeling to language universals *3g MBZ
KurlbayaShl+24 (AC L) Emergent Word Order Universals

from Cognitively-Motivated Language Models
Tatsuki Kuribayashi”™ Ryo Ueda”" Ryo Yoshida™ Yohei Oseki”"

297 0 N N, A
H HE ed Briscoe © Timothy Baldwin
H ow we I I ty po l Og ICa I ““Mohamed bin Zayed University of Artificial Intelligence
patterns are simu lated? “"The University of Tokyo ““The University of Melbourne
{tatsuki.kuribayashi, ted.briscoe, timothy.baldwin}@mbzuai.ac.ae

ueda-ryo796,yoshiryo®617,0seki)@g.ecc.u~tokyo.ac.jp
(Greenberg’s { i Je yo.8=

linguistic universals)

»
»

Model that better simulates human
reading behavior

Simulating language

evolution
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From cognitive modeling to language universals " MBZ

Kuribayashi+24 (ACL)

* A problem to predict the plausibility of language design, based on Toy languages
their learnability and processing difficulty for LMs. generated by CFG
[subject precedes object, [subject follows object, [subject follows object,
subject precedes verb, subject precedes verb, itk subject follows verb,
Adjective precedes noun...]  Adjective precedes noun...] Adjective follows noun...]

in the
world
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From cognitive modeling to language universals wg MBEOA

Kuribayashi+24 (ACL)

» A problem to predict the plausibility of language design, based on Toy languages
their learnability and processing difficulty for LMs. generated by CFG
[subject precedes object, [subject follows object, [subject follows object,

subject follows verb,

subject precedes verb, subject precedes verb,
Adjective follows noun...]

Adjective precedes noun...]  Adjective precedes noun...]

3 - compare
L I —
» Train LMs in each language and obtain learnability distribution across language configurations

B M - m

‘ For NLPers: negative PPL; higher is better

in the
world

How easy to
learn/process

« Which language is easier to learn for particular LMs?
« Human-like LMs: memory limitation, syntax-aware, cognitively-plausible left-corner traversals
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From cognitive modeling to language universals
Kuribayashi+24 (ACL)

 Learning/processing difficulties of LMs are better correlated with
typological distributions when using more cognitively-motivated LMs

»
»

Transformer LSTM  SRN  5-gram 4-gram 3-gram RNNG SRNNG

Memeory limit. > Memory limit. > Memeory limit. >

wiosyntax [l TD syntactic LM A\ LC syntactic LM

»
>

More cognitively plausible

learnability and typological plausibility

Better correlation between

] '] >
| | | |
T e ? o g l1sec.ago  now
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https://wals.info/feature/81A

Roadmap

@ motivation

20 min.

(2) my main research directions

20 min.

(3) future directions

5 min.
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i MBZUA
Future: Emergent corpus i mBz

I-Language I-Language

R isition ’
* LLMs are good at learning language, if there is a corpus - \/\

« Language transmission in one generation

E-Language E-Language
. >
* Then, where is corpus from? Time
* Humans have aChieved LLM_“ke behaViorS figure 6.1. The transmission of language over time.
from a situation w/o corpus, in the long history on Earth [Kirby, 2002]

« Connection to emergent language/communication/symbols
« must be handled via computational simulation (computational linguistics!)

| . , -
' ' PO '
Millions of years ago 10 years ago <% : f:';\\ g 1sec.ago now
\ b ;
|

LLM training may give us a hint
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Future: Connections to Robotics

» Text-only NLP alone can not explore language emergence under text-less
environments

« Agents should play real, physical games to explore the emergence of language

Build a model

Test the fit/prediction

* [f we can train LMs (robots) under the same scenarios as humans, and if they
acquire language in the same way as humans, what does this imply?

’;-'c’:}.;- MBZUA
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. 54 MBZUA
Future: How should we measure human-likeness of LLMs? “*#""*
» Humanities studies as checklists
Describe/hints - _ =
\ Build a model PO OY
e
%/,.._ Test the fit/prediction @ ?
Humanities studies model

Human language

« What is minimum criteria to explain empirical linguistic observations?

e Do LLMs have

* Canneural agents «  Can LMs mimic human-like «  Can LMs simulate human linguistic
re-invent human language? language acquisition patterns? real-time language processing? knowledge?
| [ 1
>
1 | = 3 t
Millions of years ago 10 years ago it} ey g lsec.ago  now
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u u u - {c.‘.*
Future: Maintaining the community ¥R MBZUA

* ~90% of (young) NLP researchers may be thinking about LLMs and chatbot
* It may be rational, considering the current trend/economy, instead of exploring niche topics

« How can community think more freely about diverse things or how can | encourage such
activities? (I also sometimes feel a sense of isolation in the community)

« The microwave oven was invented thanks to a person who happened to
notice a melted chocolate in radar research.

« How to appeal the excitement of exploring scientific (humanities) questions?
* Isn’t it only natural that we want to know about humans because we are humans?

Al is not only for the science of artificial intelligence but also for any science using
artificial intelligence
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